Как уменьшить силу тока не меняя напряжение

Ключевые моменты

В сети с трехфазной, данные фазы обладают сдвигом в сто двадцать градусов. Если в трёхфазной сети нужно повысить номинальное значение напряжения, сделать это можно с помощью обычного трансформатора повышения.

Мы же говорим о том, чтобы не просто повысить количество Вольт, а из однофазной получить сеть трехфазную.

Есть несколько основных вариантов, позволяющие повысить эту операцию:

Инвертор. Это электронный преобразователь, который может помочь решить проблемы с тем, чтобы повысить напряжение.
Подключить две дополнительные фазы.
Использование трансформатора трехфазного

Обратите внимание, что мощность в этом случае скорее всего снизится.

Проверьте, возможно, Вы можете подключить устройство к сети на одну фазу, не потеряв при этом мощность. Чтобы понять, обладаете ли Вы такой возможность, рассмотрите таблички на двигателе.

Некоторым устройствам необходим конденсатор для запуска, но они рассчитаны на работу в электросети как с двумя, так и с тремя фазами. Некоторые умельцы могут отыскать концы обмотки, изменяя её, но это довольно трудоёмкий процесс.

https://youtube.com/watch?v=kamoiMMIU68

https://youtube.com/watch?v=5z3wj6qUr1g

https://youtube.com/watch?v=XsfFgI3idjs

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях

Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.

Изменяет величину напряжения в большую или меньшую сторону в зависимости от соотношения числа его обмоток:

  • первичной, на которую подаётся исходное напряжение;
  • вторичной, с которой снимается его преобразованное значение.

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше — понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес — от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это — простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент

повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к. придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей. Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает .

Способы решения проблемы

Начать необходимо с установления причины, повлекшей «проседание» электрической энергии. Распишем подробно алгоритм действий:

  1. Можно начать с опроса соседей, чтобы установить имеется ли у них подобная проблема. Если они столкнулись с подобной ситуацией, то велика вероятность, что имеет место внешний фактор (слабый трансформатор на подстанции, проблемы с ВЛ или дисбаланс мощности). Но прежде, чем писать коллективное заявление в Энергосбыт, следует проверить внутреннею сеть, поэтому вне зависимости от результатов опроса переходим к следующему пункту.
  2. Отключите вводный автомат защиты и измерьте напряжение на входных клеммах, после чего повторить измерение с подключенной нагрузкой.

    Вводный автоматический выключатель отмечен зеленым овалом

Если без нагрузки напряжение в пределах нормы, а после подключения внутренней сети «проседает», то можно констатировать, что проблема имеет местный характер и решать ее придется своими силами. В первую очередь необходимо проверить вводный автомат, поскольку слабый контакт на его входе или выходе может вызвать «проседание» напряжения.


Проблемы с электрическим контактом в автоматическом выключателе (АВ)

Как правило, в случаях с плохим электрическим контактом в проблемном месте выделяется много тепла, что приводит к деформации корпуса АВ. В таких случаях необходимо произвести замену защитного устройства. Поскольку на входе прибора имеется высокое напряжение, такую работу должен выполнять специалист с 3-й группой допуска, самостоятельно производить замену опасно для жизни.

  1. Если с АВ все в порядке и дефектов не обнаружено, следует проверить соответствие сечения вводного кабеля. Для этой цели можно воспользоваться таблицей, приведенной на рисунке 2. При необходимости производится замена провода.
  2. В том случае, когда проверка кабеля и АВ не дала результатов (автомат защиты в норме, а кабель соответствует нагрузке), следует проверить отвод. Оплавленный корпус или искрение при подключении нагрузку свидетельствует о ненадежном контакте, следовательно, необходимо выполнить переподключение.

Обратим внимание, что все монтажные работы «до счетчика» должны выполняться специалистами поставщика услуг (если договор заключен напрямую) или управляющей компании. Все значительно сложнее, когда имеют место внешние причины

Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора

Все значительно сложнее, когда имеют место внешние причины. Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора.


Электронный стабилизатор Luxeon EWR-10000

Представленный на рисунке стабилизатор напряжения имеет рабочий диапазон от 90,0 до 270 Вольт и рассчитан на нагрузку до 10,0 кВА. Приборы такого типа устанавливаются на весь дом или квартиру, то есть, нет необходимости защищать каждый бытовой прибор отдельно. Стоимость электронных стабилизаторов напряжения около $200-$300, что однозначно дешевле, чем покупка новой техники, взамен вышедшей из строя.

Поднять напряжение до должного уровня также можно путем подключения домашней сети через повышающий трансформатор. Такой способ решения проблемы неудачный, поскольку нормализация электросистемы приведет к перенапряжению, что в лучшем случае приведет к срабатыванию защиты в бытовой технике. По этой же причине не рекомендуется использовать повышающей автотрансформатор.

Иногда проблему пытаются решить путем установки реле напряжения. Эффективность такого решения нулевая, прибор просто отключает питание сети, когда напряжение выходит из допустимого диапазона. В результате в розетках нет тока пока ситуация не нормализуется.

Почему человек бьется током

Для того, чтобы разобраться, почему человек бьется током, придется ознакомиться с физикой явления.

Причиной наэлектризованности материалов является статическое электричество. Под этим понятием скрывается целая совокупность явлений, заключающихся в появлении, сохранении и релаксации свободного электрического заряда, возникающего в быту как следствие трения предмета о предмет. Достаточно старательно начесать волосы, зажать в пальцах и потереть друг о друга кусочки синтетического волокна – и вот, межмолекулярное равновесие стремительно летит в тартарары. Одна часть, участвующая в трении, теряет электрон, а другая – наоборот, приобретает. Частицы начинают движение, образуя противоположно заряженные электронные слои. Возникающий дисбаланс и называется статическим электричеством, которое проявляется в небольших вспышках тока – искрении. Особенно успешно этот процесс происходит в таких материалах, как натуральная шерсть, мех, синтетика, бумага, человеческий волос, янтарь, пластмассовая или же полиэтиленовая продукция. Все эти вещества в больших количествах окружают нас в повседневной жизни, вот почему любой человек электризуется в большей или же в меньшей степени.

Уже давно электричество вошло в жизнь человека и стало его незаменимым помощником. Оно теперь столь привычно, что многие его просто не замечают. А ведь напрасно.

Электричество можно отнести к одной из природных стихий, которая в часто проявляет свой крутой нрав. Многих волнует вопрос о том, почему бьется током человек? Не нужно однозначно расценивать данный факт как ситуацию очень опасную, ведь сущность этого явления современная наука вполне может объяснить.

Причины возникновения

Повышенное напряжение в сети может возникнуть по ряду причин, как аварийных, так и технологических, обусловленных особенностями ваших электросетей. Рассмотрим несколько ситуаций подробнее:

  1. Колебания, вызванные разницей потребления в сети днём и ночью. Напряжение повышается ближе к полуночи, когда все жильцы спят, а близлежащие крупные потребители энергии не работают. Днём же напряжение может быть в норме или даже пониженным.
  2. Зимой сеть в норме, а летом вольт в розетке больше нормы. Также связано с разницей в потребляемой мощности. Зимой включают обогреватели, в связи с этим нагрузка возрастает, увеличиваются и просадки на линии.
  3. Отгорание нуля и перекос фаз. Когда неисправен нулевой провод, например, на вводе в дом проблемы с контактом или ноль вовсе отгорел, то напряжение в квартирах, подключенных к одной фазе, будет высоким – до и больше 300 вольт, в зависимости от того, насколько несимметрична нагрузка. Зато в квартирах, подключенных к другим фазам, будет пониженное напряжение. Аналогичная ситуация возникает и при проблемах с нулем во внешних линиях электропередач, тогда проблема будет не только в квартирах, но и целые улицы с частными домами могут пострадать.

Первых две проблемы обусловлены устройством трансформаторной подстанции, они обустраиваются РПН (устройство регулирования под нагрузкой), вольтодобавочными трансформаторами или другими техническими решениями. Таким образом напряжение настраивают для корректного электроснабжения.

Но допустим, что есть длинная улица в поселке из частных домов. Тогда подстанция обустраивается так, чтобы обеспечить нормальное питание отдалённых потребителей, тогда у тех потребителей, что расположены ближе к ТП будет высокое напряжение, а в последних домах нормальное или низкое. Особенно остро это проявляется в то время, когда линия сильно нагружена.

Про регуляторы

Конструктивно таблетки, контролирующие напряжение в генераторе, способны повышать ток до 13.6 вольт. Известно, что существует две схемы подключения регулятора: старая и новая.

Старая схема – это более надежный вариант, не слишком повышающий напряжение, но и не позволяющий ему опускаться до критичных значений. А вот новая – хотя она полностью скопирована со старой, имеет много недостатков.

Хронический недозаряд АКБ – это именно тот самый недостаток новой схемы. Проблематичным становится запуск двигателя в холодное время года. Владельцам приходится ставить предпусковые подогреватели или придумывать что-то еще.

Некачественные регуляторы заставляют АКБ поглощать энергию только летом, т.е, при плюсовой температуре. Зимой же, особенно если совершать короткие пробеги на авто, батарея не успевает прогреваться, хотя бы до 0, и периодически разряжается.

Опытные автомобилисты рекомендуют зимой проезжать не меньше 20-30 минут, чтобы восстановить АКБ.

Итак, как же решается проблема? Очевидно, что наилучший вариант – повысить напряжение в бортовой сети, а как это сделать? Необходимо заставить таблетку «поверить», что якобы в сети низкое напряжение. Тем самым, мы добьемся того, что ген будет выдавать недостающий вольтаж.

Низкое напряжение в бортовой сети автомобиля может быть вызвано наличием большого количества потребителей. Например, если используется мощная акустическая система с сабвуфером и усилителем, спады напряжения неизбежны.

Вместо диода использовать можно также специальные регуляторы, которые выдают три значения вольтажа, в зависимости от температуры воздуха: 13.2, 13.9 и 14.5 вольт. Получается три режима: летний, весна/осень и зима.

Рекомендуем к просмотру таблицу, где приведены данные о нормальном заряде АКБ и стандартной работе генератора.

Степень заряженности АКБ Заряжать АКБ зарядным устройством Работа генератора
12,72 вольт — 100% Если ЭДС— меньше 12,6 В норма — от 13,6 В — до 14,4 В
12,50 вольт — 75% Uнагрузки —меньше 9 В ( нагрузочная вилка) меньше 13,6 В – недозаряд(плохо)
12,35 вольт — 50% Плотность электролита— меньше 1,25г/см больше 14,4 В – перезаряд. (тоже плохо)
12,10 вольт — 25%

Эффективность диода, повышающего напряжение в бортовой сети, не подлежит сомнениям. Так делают почти все опытные автомобилисты, владельцы отечественных моделей. После этого, машина будет легко запускаться не только летом, но и зимой. Высокий ток – четкая зарядка.

Как повысить силу тока в цепи

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств

Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения. Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Последовательное подключение токоприемников

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого. Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2. Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности

Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

40Вт – 1210 Ом

60Вт – 806 Ом

100Вт – 485 Ом

200Вт – 242 Ом

Преподаватели физики очень часто задают вопрос: если две лампочки разной мощности включить последовательно в одну цепь, какая из них будет светить ярче?

Ответ здесь представлен выше. Менее мощная лампа в этом случае, будет всегда светиться ярче.

Если взять еще более мощный прибор, например 2-х киловаттный чайник или фен, то разница в напряжении будет еще существеннее. Почти все оно будет отдаваться менее мощной лампе, чайник же при этом даже не запустится.

Он будет восприниматься сетью как обычный провод, через который просто течет общий ток. Фактически сеть его замечать не будет, отдавая все напряжение на маломощный объект.

Для наглядности это можно сравнить с потоком воды, проходящего последовательно через трубы разного диаметра. Сначала у него на пути попадается труба малого диаметра (эл.приемник малой мощности), и чтобы прогнать через нее воду, придется приложить существенное усилие=напряжение.

Далее идет труба с гораздо большим диаметром (эл.приемник большей мощности). При прохождении через нее, никакого усилия=напряжения, вода практически не прикладывает.

Поток как бы и не замечает этого несущественного сужения. То же самое и с электричеством при последовательной схеме.

Предварительные работы

Прежде чем начать работу по уменьшению тока в электрической цепи, необходимо позаботиться о безопасности рабочего места. Для этого следует убедиться в том, что место полностью защищено от поражения электрическим током

Кроме того, важно запомнить, что перед началом работы необходимо обесточить все электрические цепи

Так как сила тока зависит от двух параметров — сопротивления и напряжения, существует несколько простых способов уменьшить эту величину. Наиболее распространённым и простым методом является добавление дополнительного сопротивления в сеть или подключение какого-либо устройства в разрыв цепи, которое будет обеспечивать данную функцию.

Чтобы измерить необходимые показатели, будет нужен мультиметр. Напряжение, поданное на электрическую цепь, необходимо отключить. Для этого достаточно перевести выключатель в необходимый режим. После того как индикатор устройства или показатели мультиметра сообщат о том, что сеть обесточена, можно приступать к работе. Теперь следует определить сопротивление, которое обеспечивает вводное устройство. Переключив мультиметр в режим омметра, можно узнать данный параметр. Если нет необходимого оборудования, то узнать сопротивление можно с помощью сложения всех показателей сопротивления в данной цепи.

Обслуживание и ремонт

Повышающие трансформаторы относятся к технически сложным устройствам, поэтому самостоятельное исправление поломок крайне не рекомендуется.


Единственное, что может быть выполнено своими руками — это перемотка обмоток устройства.

Рассмотрим в качестве примера тот тип, в котором используется многократная обмотка. В данном агрегате располагается магнитный сердечник, который является общим для всех трех катушек индуктивности. Как правило, одна катушка является понижающей, а вторая повышающей в данном устройстве.

Не лишним будет узнать порядок проверки трансформаторов, что позволит избежать вероятных проблем в дальнейшем. Рассмотрим всю процедуру поэтапно:

  1. Сперва необходимо осмотреть весь блок. Как правило, перегрев системы провоцирует появление некоторых выпуклостей или неровностей, которые говорят о деформации некоторых деталей.
  2. Определяем вход и выход устройства. Первый контур должен быть подключен к первой катушке устройства, где формируется само магнитное поле. Вторая часть, которая выступают в роли получателя энергии от магнитного поля, должна быть состыкована со вторичной обмоткой.
  3. Затем нужно определить фильтрацию выходного сигнала. Примечательно, что она является идентичной для диодов и конденсаторов на второй катушке устройства.
  4. Далее нужно снять некоторые части корпуса, чтобы был полный доступ к микросхемам устройства. Это нужно для того, чтобы можно было определить показатели напряжения при помощи мультиметра.
  5. Если полученные показатели оказываются существенно меньше ожидаемых (менее 80% от оптимальных), то вероятная причина поломки кроется во всей цепи, которая соединяется вокруг первичной обмотки. Для исправления причин, следует отсоединить первую катушку от подачи на нее электричества.
  6. Далее нужно проверить вторичный выход. Если фильтрация отсутствует, то нужно использовать питание от мультиметра. Если вы заметили, что оптимальное напряжение не достигается, то причина может быть в самом трансформаторе, либо в выходных клеммах.

Вообще, все эти манипуляции лучше доверить соответствующему специалисту, который не только корректно разберет и соберет устройство, но и проверит показатели частоты напряжения на отдельных участках схем первичной и вторичной обмотки.

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий. Следующий материал – это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

>Уголь, графит применяются в электрических щетках в электродвигателях. Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Как повысить силу электрического тока. Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер. Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза. Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:

Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.

При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения.

Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника.

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди.

Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике.

Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий. Следующий материал – это железо.

Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется.

Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

Заключение

Приведем несколько областей использования устройств для увеличения напряжения.

Для переменного тока наиболее распространено использование повышающих трансформаторов для подключения различной европейской электронной и электротехнической техники к бытовой 110-вольтовой сети в США.

Примеры из области постоянного напряжения:

  • мощность широко распространенных USB-зарядников достаточна для питания СД-ленты, но последние требуют для работы напряжения 12 В; для такой выгодно ситуации применение повышающего преобразователя;
  • на 3,3-вольтовых литиевых аккумуляторах можно собрать power bank для мобильных телефонов;
  • регулируемые устройства хорошо востребованы при выполнении настроек автомобильных генераторов.

Автомобильный аккумулятор с подключенным к нему повышающим преобразователем может эффективно питать за городом такие 220-вольтовые устройства как телевизор, магнитофон, дрель.

Устройства для увеличения постоянного и переменного напряжения имеют обширную область применения, серьезно отличаясь друг от друга схемотехнически.

Выбор конкретной реализации зависит от ряда факторов, основные среди которых:

  • соотношение входного и выходного напряжения;
  • мощность питаемой нагрузки
  • уровень жесткости требований электробезопасности.

На практике можно воспользоваться как покупными, так и самодельными устройствами. Большинство самодельных схем доступны для воспроизведения при наличии даже среднего уровня подготовки в области электротехники и схемотехники.

Трансформаторные устройства обеспечивают нормальное функционирование различной электротехники. Лабораторный автотрансформатор (ЛАТР) выполняет функции своеобразного блока питания для напряжения сети переменного типа. Что такое ЛАТР, каковы его особенности и основной принцип работы, будет рассмотрено далее.