Как проверить конденсатор
Прежде всего, стоит просто осмотреть его. Со временем корпус конденсатора может разрушиться, ножки могут начать качаться. На электролитических конденсаторах могут появиться подтеки. Конденсатор может изменить свой цвет. Это означает, что произошел пробой конденсатора.
Пробой – это такое состояние детали, когда диэлектрик, лежащий между двумя разноименными прокладками, разрушился, со временем или под воздействием внешних причин, и между прокладками проскочил электрический заряд. В результате конденсатор пришел в негодность. В этом случае, как и в случае появления вышеописанных дефектов, конденсатор подлежит замене.
При визуальном осмотре не всегда удается вывить неисправности конденсатора. Поэтому воспользуемся мультиметром.
Подготовительные работы
Перед проверкой конденсатора его рекомендуется выпаять из электросхемы. Дело в том, что рядом стоящие детали могут вносить искажения в показания прибора. Выпаиваем конденсатор и разряжаем его. Разряжать конденсатор нужно для того, чтобы сбросить накопленную им во время работы емкость. Мощные конденсаторы, рассчитанные на 220 и 380 вольт, лучше разряжать с помощью пробника. Пробник – электропатрон с лампочкой и двумя проводами. Если конденсатор рассчитан на 220 вольт, то пробник может быть с одной лампочкой. Если на 380 вольт, то лучше в пробник поставить несколько лампочек, включенных последовательно. Лампочка на мгновение вспыхнет и погаснет. Конденсатор разрядился.
Для того чтобы разрядить менее мощные конденсаторы можно воспользоваться отверткой с изолированной ручкой. Жалом отвертки замыкаем концы конденсатора. Проскочит небольшая искорка. Конденсатора разряжен.
Проверки сопротивления, как метод выявление вышедших из строя деталей
Сначала проверим его на сопротивление. При этом надо учесть, что электролитические конденсаторы относятся к полярному типу конденсаторов. То есть одна из прокладок у него положительно заряжена, другая – отрицательно. На корпусе конденсатора они помечены знаками «+» и « — « Полярными бывают только электролитические конденсаторы.
Устанавливаем на мультиметре режим измерения сопротивления. Если проверяем электролитический конденсатор, плюсовым концом щупа прибора касаемся плюса конденсатора, а минусовым – минуса. Если конденсатор исправен, то сразу высветится минимальное значение сопротивления. Потом оно будет плавно возрастать до максимума. Сопротивление может так же возрасти и до бесконечности. Только при исправном конденсаторе рост его происходит плавно. Не рывками.
Если конденсатор неисправен, то в одном случае прибор не показывает никакого сопротивления, т .е . ноль. При этом прибор может пищать. Это означает, что конденсатор пробит, произошло короткое замыкание. Если при касании щупом ножек конденсатора, прибор сразу показывает бесконечность, то в конденсаторе есть обрыв. И в том и в другом случае конденсатор не пригоден для дальнейшего использования, и его следует заменить.
Остальные типы конденсаторов, они, кстати, относятся к неполярным конденсаторам, проверять на сопротивление проще. Не имеет значения, каким контактом вы коснетесь ножки конденсатора, плюсом или минусом. Для измерения сразу устанавливаем величину сопротивления в Мегаомах. Сопротивление неисправного конденсатора никогда не превышает величину в 2 Мегаома. У исправного сопротивление или равно, или больше этой величины.
Проверка на неисправности с помощью измерения ёмкости
Замеряя сопротивление конденсатора, мы только проверяем его исправность. Нам еще нужно определить его емкость — самый главный номинал конденсатора.
Учтите, что на пробой с помощью мультитестора можно проверить только те конденсаторы, емкость которых меньше 0,25 микрофарад.
Как мы видим, нет ничего сложного в проверке с помощью мультиметра работоспособности конденсатора и соответствии его заявленным номиналам. Мы уже говорили, что со временем конденсаторы утрачивают свою способность накапливать и распределять энергию. Они попросту высыхают. Поэтому нужно регулярно проверять свои электронные и электрические схемы и отбраковывать пришедшие в негодность конденсаторы. Этим вы обеспечите надежную и качественную работу своей аппаратуры.
Определение емкости неизвестного конденсатора
Способ №1: измерение емкости специальными приборами
Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.
Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).
Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!
Способ №2: измерение емкости двух последовательно включенных конденсаторов
Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?
На помощь приходит формула емкости двух последовательно соединенных конденсаторов:
Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.
Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.
Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:
Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.
Подставляем эти цифры в формулу и получаем:
Способ №3: измерение емкости через постоянную времени цепи
Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).
Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.
Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)
Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).
Вот какой-то чел очень хорошо все рассказал на видео:
Другие способы измерения емкости
Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.
Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.
Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:
Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.
Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Как проверить исправность электролитического конденсатора мультиметром
Сначала нужно провести внешний осмотр конденсатора. Повреждения электролитов нередко приводят к увеличению давления внутри их корпуса. В итоге они взрываются. Сила взрыва невелика, но больший вред окружающему пространству наносит разбрызгивание содержимого детали. Для исключения этого явления современные конденсаторы имеют в верхней части крестообразную насечку. При превышении давления корпус рвется по ее линиям и стравливает давление из корпуса, не давая ему достичь высоких значений. Заключение о неисправности можно смело дать в случаях вспучивания корпуса или его разрыва в месте насечки. В остальных случаях потребуется проверить работоспособность конденсатора.
Такой конденсатор необходимо заменить
Принцип проверки заключается в следующем. Мультиметры и тестеры используют для измерения сопротивления внутренний источник постоянного тока – батарейку. Для проверки исправности конденсатора прибор подключают к его выводам, соблюдая полярность. В первый момент времени прибор будет показывать сопротивление разряженного устройства, которое близко к нулю. Источник постоянного тока прибора начнет заряжать конденсатор, по мере зарядки сопротивление будет увеличиваться. Когда заряд закончится, прибор покажет бесконечно большое сопротивление, лежащее за пределом его измерения.
Перед тем, как проверить конденсатор мультиметром, его необходимо разрядить, замкнув выводы между собой или закоротив любым металлическим предметом: отверткой, пинцетом, ножом. Предел измерения мультиметра выставляется максимально возможным. Плюсовой вывод прибора, имеющий красный цвет и маркировку «Ω», соединяется с выводом радиодетали, обозначенным знаком «+». Минусовой вывод черного цвета, обозначенный на корпусе мультиметра «COM», подключается к другому выводу, и измерение начинается. При этом нужно внимательно следить за показаниями мультиметра, которые должны только увеличиваться, не изменяясь в меньшую сторону.
https://youtube.com/watch?v=mcI1SnsPkcQ
Должен быть обеспечен надежный контакт между щупами мультиметра и выводами детали, процесс не рекомендуется прерывать. Также нельзя держаться за оба вывода руками: тело человека имеет сопротивление, которое будет шунтировать элемент, мешая ему заряжаться. В конце проверки прибор покажет не бесконечность, а сопротивление тела, и исправность изделия определить будет невозможно.
Возможные результаты проверки конденсатора мультиметром:
- показания прибора равны нулю и не увеличиваются, любо увеличиваются незначительно. В этом случае у изделия наблюдается пробой (замыкание) обкладок между собой. Его подключение к схеме, где он работает, приведет к короткому замыканию
- показания прибора увеличиваются, но не достигают бесконечности, останавливаясь на определенном значении сопротивления. В этом случае между обкладками наблюдается ток утечки, а емкость изделия значительно снижается. Элемент будет работать, но неэффективно, выполняя свое функциональное назначение не полностью. Использование его в блоках питания приведет к недостаточной фильтрации выходного напряжения, на звуковых устройствах это сопровождается наличием фона 50 Гц в выходном сигнале. В других узлах это приводит к искажениям сигнала.
Рабочее напряжение мультиметра не превышает 1,5 В, а в схемах, где работают конденсаторы оно намного больше. Если прибор показывает утечку, то при установке изделия на свое место при рабочем напряжении не исключен его полный пробой.
При проверке работоспособности электролитического изделия изменять полярность подключения мультиметра не имеет смысла.
Техника безопасности при работе с конденсаторами
Чтобы предотвратить касание находящихся под напряжением токоведущих участков, последние подлежат изоляции кожуховым приспособлением или оградой в виде сетки. Нужно хорошо укрепить корпус устройства, чтобы оно не сместилось и не выпало из отводимой под него зоны из-за тряски и вибраций, возникающих при работе. Перед проведением теста и первичным подсоединением в схему надо удостовериться, что устройство полностью разряжено. Провести разрядку можно посредством резистора. Целесообразно делать это каждый раз после выключения, так как элементы данной группы склонны долго хранить накопившийся заряд.
Данные изделия относятся к устройствам небольшой емкости, подходящим для монтажа в электросхемах
Для корректного функционирования важно правильно подобрать номинал и подсоединить компоненты в схему
Проверка на пробой и обрыв
Одна из причин выхода из строя конденсатора — это пробой диэлектрического слоя или обрыв внутреннего контакта. Любая его проверка мультиметром начинается с диагностики именно этих неисправностей из-за того, что они наиболее часто встречаются.
На мультиметре выставляется режим измерения сопротивления с максимальным значением. К контактам выпаянного и разряженного радиоэлемента с соблюдением полярности прикладываются щупы мультиметра.
Первое появившееся значение сопротивления должно начать расти и в итоге, через несколько секунд, показать бесконечное значение. На экране мультиметра бесконечно большое сопротивление показывается символом «1».
Если сразу же появилась цифра «1», значит есть обрыв внутри конденсатора. Если значение не растет, а на индикаторе горит цифра «0», значит есть пробой диэлектрика. В этом случае тестируемая радиодеталь работает в роли обыкновенного проводника и может шунтировать часть элементов платы.
https://youtube.com/watch?v=XxRjcCHX33o
Владельцы старых, но надежных стрелочных электроизмерительных приборов иногда озадачены вопросом, как прозвонить конденсатор мультиметром аналогового типа. Ответ простой: по той же схеме, что и цифровым мультиметром. Вместо цифр на экране будет бегать по шкале стрелка — вот и вся разница.
https://youtube.com/watch?v=N9ZpA9exg7o
Проверка мультиметром
У непрофессионального мастера в арсенале обычно имеется самый простой прибор – мультиметр. Тем не менее, и с его помощью тоже можно проверить работоспособность компонента.
Проверка неполярных конденсаторов
Первым делом любой компонент начинают проверять омметром с целью обнаружения пробоя. Да, это косвенная проверка, но она позволяет выявить определенные дефекты и провести выбраковку элементов. При этом существуют некоторые тонкости, которые зависят от типа и емкости компонента.
Исправный конденсатор не должен постоянно пропускать ток – иметь высокое сопротивление. Ведь как мы уже говорили, причиной утечки часто является нарушение изоляционного слоя между обкладками. В идеале сопротивление должно быть приближено к норме.
Измерение полярного керамического конденсатора: пошаговая инструкция
Шаг 1. Необходимо выставить максимальный диапазон измерений для мультиметре, чтобы привести его в режим омметра.
Шаг 2. Перед началом тестирования конденсатор следует «зачистить» от оставшегося заряда. Если это элемент небольших габаритов с минимальной емкостью, то можно перемкнуть вывод отверткой. Если речь идет о крупногабаритном элементе, то перемыкают его через мощный резистор сопротивления.
Шаг 3. После установки режима необходимо проверить дисплей — на нем должны высвечиваться символы, которые означают отсутствие проводимости между клеммами.
Шаг 4. Теперь необходимо подсоединить клеммы к выводам.
Конечно, такая проверка еще не является точным доказательством работоспособности прибора, ведь нам следует убедиться в отсутствии обрыва в цепочке. В данном случае мультиметр просто не успевает отреагировать на изменения, поэтому потребуется измерение емкости.
Тестирования электролитического компонента с большой емкостью: пошаговая инструкция
Для того чтобы сравнить значения потребуется проверить другой – неполярный конденсатор, у которого имеется высокий показатель емкости.
Шаг 1. Устанавливаем прибор в исходное положение, как в предыдущем случае.
Шаг 2. Мы наблюдаем, как показания на приборе начинаются с нескольких сотен, преодолевают предел мегаом и увеличиваются дальше.
Шаг 3. Необходимо дождаться окончания проверки и взглянуть на прибор.
В данном случае можно сказать, что повреждение отсутствует (как и обрыв), потому что мы контролировали процесс работы конденсатора.
Проверка прибором полярных конденсаторов: пошаговая инструкция
Теперь мы проверим работу полярных компонентов. В таком тестировании не имеется существенных отличий, только диапазон измерений устанавливается в пределах 200 кОм. Ведь только если заряд достигнет этого придела, можно будет с точностью судить об отсутствии повреждения.
Первым делом мы будем проводить тест конденсатора с номиналом 10 uF. Стоит отметить, что при внешнем осмотре на нем отсутствуют повреждения.
Шаг 1. Настраиваем прибор в режим омметра.
Шаг 2. Подсоединяем клеммы к компоненту.
Шаг 3. Останавливаем прибор.
Здесь показатели растут не так быстро как при проверке неполярного элемента, но на этом значении уже стало ясно, что повреждения отсутствуют.
Затем мы будет проверять полярный конденсатор с номиналом 470 uF.При его внешнем осмотре уже заметно разбухание верхней части.
Такой признак свидетельствует о наличии утечки тока, тем не менее, она может быть в разумных пределах, но использовать этот компонент не следует. Проведение опыта тоже лучше остановить, чтобы не разряжать прибор.
Измерение емкости конденсатора
Предыдущим способом тоже можно обнаружить неисправный конденсатор, но все-таки понадобится дополнительная проверка. Это необходимо в ситуациях, когда имеются подозрения на неисправность компонента.
Рассмотрим пример тестирования на неполярном конденсаторе. В данном случае будет осуществляться проверка небольшого керамического компонента с номиналом — 4,7 nF. Для проведения тестирования необходимо установить на приборе режим измерения емкости.
Таким же способом можно проверить на исправность и другие элементы, которые мы тестировали ранее.
Инструкция проверки тестером
Тестеры различаются по видам моделей:
- Существуют приборы, в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
- Обычные тестеры позволяют осуществить проверку в режиме омметра.
- Цифровой тестер измеряет транзистор в режиме проверки диодов.
В любом из случаев существует стандартная инструкция:
- Прежде, чем начать проверку, необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
- В случае, когда проверяется маломощный полевой транзистор, то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
- При проверке стандартным тестером, необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
- Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.
Проверка пускового и рабочего конденсаторов
Наиболее доступный способ проверить работоспособность такого элемента – воспользоваться мультиметром. Для этого деталь нужно предварительно обесточить и произвести разрядку посредством закорачивания выводов. Затем после снятия какой-либо клеммы нужно установить на устройстве режим замера емкости конденсаторных устройств и положить щупы на выводы проверяемой детали. На электронном табло высветится искомое значение.
Важно! Разные типы мультиметров имеют неодинаковое обозначение программы замера емкости. Важно также выбрать наибольшее предельное значение считываемого параметра
Неодинакова и скорость получения результата: у одних приборов на это уходит несколько секунд, у других – более минуты, ипоследнем случае потребуется подождать. Если обнаружилось расхождение с обозначенным на теле элемента номиналом, требуется его заменить.
Типы автомобильных конденсаторов
- Для генератора. Подаёт электричество в работающий генератор, предотвращает перепады напряжения в зажигании, ликвидирует шумы радиоприёмника. Если в генераторе авто нет конденсатора, проезжающий мимо транспорт вызовет сильный шум на радио. Благодаря этому изделию удаётся защититься от дискомфорта в пути.
Так выглядит автомобильный конденсатор
- Для сабвуфера. Автоусилитель обеспечивает более полное насыщение баса и расширяет диапазон воспроизведения частот, однако он сильно увеличивает потребление тока, что приводит к проблемам со светом фар и плохому качеству воспроизведения низких частот. Хорошо работающий конденсатор — гарантия защиты от проблем.
Это интересно: О подушках безопасности
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Source: MyTooling.ru
Как проверить мультиметр на работоспособность
Надо перевести переключатель в положение для измерения сопротивления. Обычно это положение обозначается ОНМ. Прибор следует отградуировать механической градуировкой так, чтобы стрелка совместилась с крайней риской.
Замкнуть хвостики отверткой, ножом, одним из щупальцев мультиметра для снятия заряда с конденсатора
На этом этапе надо действовать аккуратно и осторожно. Даже небольшой бытовой элемент может нанести удар по человеческому телу
После включения прибора, необходимо перевести переключатель в режим измерения сопротивления и соединить щупы. На дисплее должно отразиться нулевое значение сопротивления или близко к нему.
Ход проверки
Определяют визуально на предмет физических нарушений. После чего пробуют крепление ножек на плате. Несильно раскачивают элемент в разные стороны. При обрыве одной из ножек или отслаивании электродорожки на плате, это сразу будет заметно.
Если внешних признаков нарушений нет, то сбрасывают возможный заряд и прозванивают мультиметром.
Если на приборе показано практически нулевое сопротивление, то элемент начал заряжаться и исправен. По мере зарядки, сопротивление начинает расти. Рост значения должен быть плавно, без рывков.
При нарушенной работоспособности:
- При зажиме разъёмов показания тестера сразу безразмерно велики. Значит, обрыв в элементе.
- Мультиметр на нуле. Иногда сигнализирует звуковым сигналом. Это признак короткого замыкания или, как говорят, «пробой».
В этих случаях элемент надо заменить на новый.
Если надо проверить работоспособность неполярного конденсатора, то выбирают предел измерения мегаомы. При тестировании исправная радиодеталь не покажет сопротивление выше 2 мОм. Правда, если номинальный заряд элемента меньше 0,25 мкФ, то требуется LC-метр. Мультиметр здесь не поможет.
После проверки на сопротивление следует проверка на ёмкость. Для того чтобы знать, способен ли радиоэлемент накапливать и удерживать заряд.
Тумблер мультиметра переводится в режим СХ. Выбирается предел измерения исходя из емкости элемента. К примеру, если на корпусе обозначена ёмкость в 10 микрофарад, то пределом на мультиметре может быть 20 микрофарад. Значение ёмкости указано на корпусе. Если показатели измерения сильно отличаются от заявленных, то конденсатор неисправен.
https://youtube.com/watch?v=xyIX04oM27U
Этот вид измерения лучше всего проводить цифровым прибором. Стрелочный покажет лишь быстрое отклонение стрелки, что лишь косвенно говорит о нормальности проверяемого элемента.
Как проверить устройство не выпаивая
Для того чтобы случайно не сжечь паяльником какую-нибудь микросхему на плате, существует способ проверки конденсатора мультиметром не выпаивая.
Перед тем как прозвонить, электродетали разряжаются. После чего тестер переводится в режим проверки сопротивления. Щупальца прибора подключаются к ножкам проверяемого элемента, с соблюдением необходимой полярности. Стрелка прибора должна отклонится, поскольку по мере зарядки элемента его сопротивление увеличивается. Это свидетельствует о том, что конденсатор исправен.
Иногда приходится проверять на плате и микросхемы. Это сложная процедура, не всегда выполнимая. Поскольку микросхема представляет собой отдельный узел, внутри которого находится большое количество микродеталей.
Проверка микросхемы
Мультиметр ставится в режим измерения напряжения. На вход микросхемы подается напряжение в пределах допустимой нормы. После чего необходимо проконтролировать поведение на выходе микросхемы. Это очень сложный прозвонок.
Перед выполнением всех видов работ, связанных с электричеством, проверки, тестирования радиоэлементов, очень важно соблюдать правила безопасности. Мультиметр должен тестировать только обесточенную электрическую плату
https://youtube.com/watch?v=5jS4cQFJXIM
Определение ёмкости конденсатора
Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.
Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе
Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры
Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.
Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.
Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.
На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.
Порядок проверки
Некоторые дефекты можно обнаружить и без прибора. Поэтому прежде чем им воспользоваться, необходимо выполнить первые 2 пункта.
Внешний осмотр
Даже небольшое вздутие корпуса – явный признак неисправности. Другие дефекты, которые легко обнаружить визуально:
- появление подтеканий (характерно для «электролитов»);
- изменение окраски корпуса;
- наличие признаков термических воздействий на данном участке (отслоение дорожек, потемнение платы и тому подобное).
Проверка надежности фиксации
Нужно попробовать покачать емкость, если она впаяна в электронную плату. Естественно, аккуратно. При обрыве одной из ножек это сразу почувствуется.
Проверка на сопротивление
Если предстоит работать с «электролитом», то здесь важна его полярность. Плюсовой вывод обозначается на корпусе меткой «+». Поэтому и клеммы прибора присоединяются соответственно. Плюсовая – на «+», минусовая – на «–». Но это для «электролитов». При проверке конденсаторов бумажных, керамических и так далее – без разницы. Предел измерения – максимальный.
Что смотреть? Как движется стрелка. В зависимости от номинала конденсатора она или сразу устремится к «∞», или медленно пойдет к краю шкалы. Но главное – при ее перемещении не должно быть скачков (рывков).
- Если в детали пробой (КЗ), то стрелка останется на нуле.
- При внутреннем обрыве она резко уйдет на «бесконечность».
На емкость
В этом случае понадобится прибор цифровой. Стоит отметить, что не все мультиметры способны провести такое испытание, а если и могут, то результат будет довольно приблизительным. По крайней мере, на изделия «made in China» особо полагаться не стоит.
Как подключать деталь к прибору, написано в его инструкции (раздел «измерение емкости»). Если речь идет об «электролите», то опять-таки – с соблюдением полярности.
Примерно определить соответствие обозначенному на корпусе детали номиналу емкости можно и стрелочным прибором. Если она небольшая, то при проверке на сопротивление стрелка отклоняется достаточно быстро, но не резко. При значительной величине емкости заряд идет медленнее, и это хорошо видно. Но опять-таки, это всего лишь косвенное свидетельство пригодности конденсатора, говорящее о том, что КЗ нет и он берет заряд. Повышенный ток утечки таким способом определить невозможно.
https://youtube.com/watch?v=ZlJThQN-omA
Полезные советы
Если схема дает сбои, то нужно обратить внимание на дату выпуска конденсаторов, стоящих в конкретной цепи. За 5 лет эта радиодеталь «усыхает» примерно на 55 – 75%. На проверку старой емкости тратить время не имеет смысла – лучше сразу менять
Даже если конденсатор в принципе и рабочий, то определенные искажения он уже вносит. Это в первую очередь относится к импульсным схемам, с которыми можно столкнуться, к примеру, при ремонте «сварочника» инверторного типа. А в идеале такие элементы цепи желательно менять раз в пару лет. Чтобы результаты измерений были максимально точными, перед проверкой емкости в прибор следует поставить «свежую» батарейку. Конденсатор перед испытанием должен из схемы выпаиваться (или хотя бы одна его ножка). Для больших деталей с подводкой проводов – 1 из них отсоединяется. В противном случае истинного результата не будет. Например, цепь станет «звониться» через другой участок. В ходе проверки конденсатора нельзя касаться руками его выводов. Например, прижимать щуп к ножкам пальцами. Сопротивление нашего тела – порядка 4 Ом, поэтому так проверять радиодеталь совершенно бессмысленно
На проверку старой емкости тратить время не имеет смысла – лучше сразу менять. Даже если конденсатор в принципе и рабочий, то определенные искажения он уже вносит. Это в первую очередь относится к импульсным схемам, с которыми можно столкнуться, к примеру, при ремонте «сварочника» инверторного типа. А в идеале такие элементы цепи желательно менять раз в пару лет. Чтобы результаты измерений были максимально точными, перед проверкой емкости в прибор следует поставить «свежую» батарейку. Конденсатор перед испытанием должен из схемы выпаиваться (или хотя бы одна его ножка). Для больших деталей с подводкой проводов – 1 из них отсоединяется. В противном случае истинного результата не будет. Например, цепь станет «звониться» через другой участок. В ходе проверки конденсатора нельзя касаться руками его выводов. Например, прижимать щуп к ножкам пальцами. Сопротивление нашего тела – порядка 4 Ом, поэтому так проверять радиодеталь совершенно бессмысленно.
Пусковые конденсаторы для электродвигателей 220В — схема подключения, расчет и цена
Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.
Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?
Все конденсаторы, в том числе и пусковые, имеют следующие особенности:
- В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
- Большая емкость при малых габаритных размерах – особенность полярных накопителей.
- Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.
Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.
Назначение и преимущества
Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.Наличие подобного элемента в системе определяет следующее:
- Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
- Проводится значительное повышение показателя магнитного потока.
- Повышается пусковой момент, значительно улучшается работа двигателя.
Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.