Dc/ac инвертор: принцип работы, схемотехника, встроенное по

Содержание

Нестандартные рабочие режимы

Работа в емкостной области

Емкостная область работы силовых ключей потенциально опасна. В качестве примера можно привести работу системы в устойчивом режиме при малой нагрузке. В этих условиях рабочая частота системы находится вблизи нижней резонансной частоты, и реализуется режим ZVS.

Представим себе, что нагрузка изменяется с малого значения до высокого; при этом частота коммутации должна соответствовать новой резонансной частоте. Если этого не происходит, преобразователь может перейти в область 3 (рис. 2). Силовой MOSFET выключается, пока ток проходит через внутренний диод, и поскольку второй силовой MOSFET включен, диод может восстановиться, и начнет протекать сквозной ток. В этом случае происходит дополнительное рассеяние мощности, обусловленное прохождением тока через внутренний диод.

При одновременном включении обоих силовых ключей может возникнуть условие отказа полумостовой схемы. Как правило, во время восстановления внутренних диодов происходят выбросы тока большой величины. Этого риска можно избежать, воспользовавшись одним из нескольких решений. Например, специализированный контроллер драйвера затвора, который управляет мертвым временем или сложными контурами, позволяет увеличить этот показатель или обеспечить более высокие значения Rgate. Кроме того, в настоящее время производители полупроводников выпускают специализированные силовые ключи с меньшим временем восстановления. Например, компания STMicroelectronics разработала новую MOSFET-технологию MDmesh DM2, благодаря которой время восстановления встроенных диодов стало меньше 200 нс.

Как уже упоминалось, резонансный преобразователь может работать в емкостной или индуктивной областях (рис. 3). В индуктивной области коммутация осуществляется в режиме переключения по нулевому напряжению. При коммутации, когда основной ключ переходит из состояния ВКЛ. в ВЫКЛ., его ток Ip имеет положительную величину (область фиолетового цвета) и протекает от стока к истоку. В емкостной области (бежевого цвета) работа осуществляется в режиме переключения по нулевому току. В этом случае ток на основном ключе протекает от истока к стоку, в т. ч. через физический диод MOSFET-структуры. Рассмотрим работу LLC-системы в емкостном режиме при двух условиях.

Рис. 3. Емкостная и индуктивная области

Полный мостовой инвертор

В инверторах этого типа используются четыре переключателя. Основное отличие полумостового инвертора от полномостового — это максимальное значение выходного напряжения. В полумостовом инверторе пиковое напряжение составляет половину напряжения питания постоянного тока. В полномостовом инверторе пиковое напряжение совпадает с напряжением питания постоянного тока. Схема полного мостового инвертора является таким, как показано на рисунке ниже.

Импульс затвора для полевых МОП-транзисторов 1 и 2 одинаков. Оба переключателя работают одновременно. Точно так же полевые МОП-транзисторы 3 и 4 имеют одинаковые импульсы затвора и работают в одно и то же время. Но полевые МОП-транзисторы 1 и 4 (вертикальное плечо) никогда не работают одновременно. Если это произойдет, то произойдет короткое замыкание источника постоянного напряжения.

Для верхнего полупериода (0 <t <π) срабатывают полевые МОП-транзисторы 1 и 2, и ток будет течь, как показано на рисунке ниже. В этот период времени ток течет слева направо.

Для нижнего полупериода (π <t <2π) срабатывают полевые МОП-транзисторы 3 и 4, и ток будет течь, как показано на рисунке. В этот период времени ток течет справа налево. Пиковое напряжение нагрузки совпадает с напряжением питания постоянного тока Vdc в обоих случаях.

Подключение люминесцентных ламп через ЭПРА

Улучшить работу люминесцентного светильника, убрав надоедливое гудение, раздражающее моргание, и повысить яркость свечения вполне реально самому. Достаточно лишь заменить устаревшую схему дроссельного управления на современный электронный пускорегулирующий аппарат — ЭПРА.

Подключение балластной электроники возможно выполнить с любой люминесцентной трубкой, всех типов: Т12, Т8 и Т5, но к лампам Т12 оно будет не так рационально. Производство ламп Т12 сейчас сокращается, ввиду их низкой энергоэкономичности по сравнению с другими Т8 и Т5. За границей устаревшие Т12 фактически уже не выпускаются.

Обычный, купленный в магазине ЭПРА состоит из:

  • фильтра низкочастотных помех, работающего на вход и выход устройства;
  • выпрямителя переменного тока сетевой частоты;
  • инвертора;
  • элементов для коррекции коэффициента мощности;
  • фильтра постоянного тока;
  • дросселя, ограничивающего рабочий ток.

Светильник запускается электронным балластом в три этапа:

  1. Прогрев спиралей лампы для последующего плавного пуска, продлевающего срок службы.
  2. Подача импульса повышенного напряжения, необходимого для включения лампы.
  3. Стабилизация напряжения на рабочем уровне после зажигания светильника.

Подключение люминесцентных ламп через ЭПРА

Первое, что нужно сделать — разобрать светильник и вынуть из него старую начинку: дроссель, стартер, конденсаторы. В конечном итоге внутри должны остаться лампы дневного света, комплект проводов и новоустановленный электронный блок.

Для такой работы вам потребуется:

  • индикатор фазы;
  • отвертка с минусовым жалом;
  • отвертка крестовая;
  • кусачки;
  • канцелярский нож для зачистки проводов;
  • изоляционная лента;
  • саморезы, понадобятся для закрепления блока ЭПРА.

Покупать новый электронный блок следует исходя из мощности вашего светильника.

Подключение ЭПРА к люминесцентным лампам несложно сделать, имея минимальные познания в электрических схемах, и небольшой опыт работы с электропроводкой.

Перед тем как собирать схему, следует выбрать внутри светильника место для закрепления коробка ЭПРА, руководствуясь длиной проводов и удобством доступа к клеммам. Электронный блок быстро и надежно закрепляется к корпусу при помощи обычных саморезов в пробитые гвоздем отверстия. Теперь можно соединить пускорегулирующий аппарат с розетками ламп.

Подключая две люминесцентные лампы, без разницы последовательно или параллельно, убедитесь в том, что мощность электронного блока в два раза выше, чем у каждого источника света

Таким же принципом, важно руководствоваться при сборке трёх и более ламп в одном светильнике

Собрав осветительный прибор, нужно бы его повесить на место. Перед подключением проводов, торчащих из стены, проверьте отсутствие напряжения на них индикатором.

Самый ответственный момент — первое включение прибора с ЭПРА. Если светильник, например, с двумя лампами был собран правильно, тогда: во-первых, лампы засветятся одновременно быстро, без разогрева как было раньше; во-вторых, свет перестанет заметно мерцать, пропадет низкочастотное гудение и повысится яркость света в целом.

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой»  мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к конденсаторным фильтрам – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Моделирование полумостового инвертора в MATLAB

Для моделирования добавьте элементы в файл модели из библиотеки Simulink.

1) 2 источника постоянного тока — 50 В каждый

2) 2 МОП-транзистора

3) резистивная нагрузка

4) Генератор импульсов

5) НЕ ворота

6) Powergui

7) Измерение напряжения

8) ВХОД и ОТ

Подключите все компоненты согласно принципиальной схеме. Снимок экрана с файлом модели инвертора Half Bridge показан на рисунке ниже.

Импульс затвора 1 и импульс затвора 2 — это импульсы затвора для MOSFET1 и MOSFET2, которые генерируются схемой генератора затвора. Стробирующий импульс генерируется ГЕНЕРАТОРОМ ИМПУЛЬСОВ. В этом случае MOSFET1 и MOSFET2 не могут срабатывать одновременно. Если это произойдет, то произойдет короткое замыкание источника напряжения. Когда MOSFET1 закрыт, MOSFET2 будет открыт в это время, а когда MOSFET2 закрыт, MOSFET1 в это время открыт. Итак, если мы генерируем импульс затвора для любого одного полевого МОП-транзистора, мы можем переключить этот импульс и использовать его для другого полевого МОП-транзистора.

Как работает инвертор на основе SPWM сигнала

Схема подобного инвертора показана на следующем рисунке.

Как вы видите, мы использовали в схеме два MOSFET транзистора N-типа и полумост для управления трансформатором. Для уменьшения нежелательных шумов и защиты MOSFET транзисторов мы использовали два диода 1N5819, включенных параллельно MOSFET транзисторам. Для уменьшения возможных нежелательных импульсов, формируемых в секции управления, мы использовали резисторы сопротивлением 4.7 Ом, включенных параллельно диодам 1N4148. И, наконец, транзисторы BD139 и BD 140 включены по двухтактной схеме для управления затворами MOSFET транзисторов потому что MOSFET транзисторы имеют очень большое емкостное сопротивление затвора и требуют как минимум напряжения 10V на своем затворе чтобы работать корректно.

Для лучшего понимания принципов работы представленной схемы на следующем рисунке мы привели ее половину. Рассмотрим случай когда MOSFET транзистор в ней открыт – в этой ситуации ток протекает сначала через трансформатор и затем через MOSFET транзистор замыкается на землю, таким образом, магнитный поток возникает в том же самом направлении, в котором течет ток, поэтому сердечник трансформатора передает этот магнитный поток на вторую обмотку и, таким образом, на выходе мы получаем положительную половину цикла синусоидального сигнала.

В следующем цикле ток течет уже в обратном направлении и, следовательно, магнитный поток возникает в этом же самом направлении, поэтому направление магнитного потока в сердечнике трансформатора также изменяется (по сравнению с предыдущим рассмотренным случаем).

То есть теперь мы знаем, что направление магнитного потока в трансформаторе изменяется. Таким образом, включая и выключая оба MOSFET транзистора (они инвертированы по отношению друг к другу) и осуществляя эти переключения 50 раз в секунду, мы будем формировать изменяющееся магнитное поле в сердечнике трансформатора, следовательно, будет изменяться направление тока во вторичной обмотке трансформатора в соответствии с законом Фараде. В этом и заключается основной принцип работы инвертора.

Теперь на следующем рисунке рассмотрим полную схему чистого синусоидального инвертора на основе платы Arduino.

Как вы видите из представленной схемы, переключение циклов работы выше представленной схемы инвертора будет осуществляться с помощью двух цифровых контактов платы Arduino.

Конструкция проекта

В демонстрационных целях мы собрали схему нашего инвертора на стрипборде (Veroboard). На выходе трансформатора схемы будет протекать огромный ток, поэтому в этом месте коннекторы (соединители) необходимо использовать как можно толще.

Жесткий емкостной режим

Этот режим возникает, когда фаза тока резонансного контура становится нулевой или отрицательной при переходе из одного цикла в другой, как в случае короткого замыкания на выходе (рис. 4). В этом случае силовой MOSFET выключается, работа преобразователя прекращается, и жесткой коммутации не происходит.

Рис. 4. Жесткий емкостной режим

Жесткое переключение при запуске

При запуске системы режим ZVS может выключиться, что приведет к жесткой коммутации силовых ключей и появлению большого обратного тока при восстановлении диода. При запуске системы напряжение на емкости резонансного контура изначально отсутствует, и требуется ряд коммутационных циклов, прежде чем оно достигнет величины Vin/2 в устойчивом режиме. В начале переходного процесса могут появиться большие всплески тока в резонансном контуре. Этот ток не меняет полярности в первом одном или в первых двух коммутационных циклах. В этих потенциально опасных условиях работа в емкостном режиме и с жесткой коммутацией может оказаться очень ограниченной по времени. dV/dt и dI/dt силового ключа могут превысить номинальные значения (рис. 5) и привести к отказу.

Рис. 5. Опасный режим работы устройства, работающего в условиях превышения номинальных значений

Замедление динамики переходных процессов в схеме с комбинацией диода и резисторов, установленных последовательно двум затворам, помогает избежать этих отказов.

Жесткая коммутация в результате отключения питания

Во время нормальной работы импульсного источника питания может возникнуть режим жесткого переключения. Если отключить систему от основного источника питания, она может перейти в емкостной режим (рис. 6). На рисунке видно, что после отключения основного источника питания (точка А) мертвого времени, установленного драйвером, недостаточно для дальнейшего продолжения работы в индуктивном режиме. В этих условиях сквозной ток ключей увеличивается.

Рис. 6. Режим жесткой коммутации в результате отключения питания

Жесткая коммутация из-за быстрого переходного процесса на нагрузке

В этом случае система не в состоянии достаточно быстро изменить частоту коммутации. В результате возникает емкостной режим работы, пока управляющий блок пытается восстановить нормальную работу импульсного источника питания в индуктивном режиме.

По сигналу напряжения Vgs (фиолетового цвета) на рис. 7 видно, как меняется рабочая частота при быстром переходном процессе на нагрузке. Сигнал тока (бирюзового цвета) имеет типичный вид для резонансного LLC-преобразователя. Напряжение Vds (зеленого цвета) отстает от сигнала тока. Далее этот сигнал принимает типовой вид для емкостной цепи.

Рис. 7. Режим жесткой коммутации в результате быстрого переходного процесса на нагрузке

Приложения

Инкапсулированный преобразователь постоянного тока в постоянный в модульной конструкции для сборки печатной платы

Преобразователи постоянного напряжения являются частью импульсных источников питания, с которыми работают такие нагрузки, как блоки питания ПК , ноутбуки , сотовые телефоны , небольшие двигатели, устройства Hi-Fi и многое другое. м. Быть в эксплуатации. Преимущества перед линейными источниками питания — лучшая эффективность и меньшее тепловыделение. Прежде всего, первый играет важную роль в преобразовании напряжения батареи, поскольку срок службы батареи намного больше с импульсным источником питания: с линейным регулятором напряжения или последовательным резистором, с другой стороны, мощность падение через резистор преобразуется в отходящее тепло. С другой стороны, коммутационные потери , возникающие в импульсном источнике питания , намного ниже.

Регулятор напряжения с тактовой частотой не только выполняет функцию преобразователя напряжения, но и служит фильтром, чтобы максимально снизить негативное влияние на энергосистему (так называемая обратная связь по сети ) , особенно в высокопроизводительных приложениях . Одним из примеров являются активной мощностью коррекции коэффициента (ПФ).

Преобразователи постоянного тока в постоянный также предлагаются в виде полностью инкапсулированных модулей преобразователей, некоторые из которых предназначены для непосредственной сборки на печатных платах . Выходное напряжение может быть меньше, равно или больше входного напряжения, в зависимости от конструкции. Наиболее известны сборки, которые преобразуют низкое напряжение в гальванически изолированное низкое напряжение. Инкапсулированные преобразователи постоянного тока доступны для напряжений от 1,5  кВ до более 3 кВ и используются для питания небольших потребителей в сетях постоянного напряжения, таких как B. до 24 В на промышленных предприятиях или до 48 В в телекоммуникациях или в области электронных сборок, например 5 В для цифровых схем или ± 15 В для работы операционных усилителей .

Преобразователи напряжения постоянного тока , и, исторически, для высоких выходных напряжений также известны как трансвертерами . Схема содержит инвертор и трансформатор с последующим выпрямлением. Примерами являются электронные вспышки с батарейным питанием или преобразователи постоянного напряжения с разделением потенциалов.

В электроэнергетике и приводной технике преобразователи постоянного тока относят к преобразователям постоянного тока. Различия в первую очередь касаются использования и диапазона производительности. В качестве переключателей в области энергетических технологий здесь в качестве клапанов используются силовые MOSFET , IGBT и тиристоры . Прерыватели постоянного тока также используются в этой области применения в виде комбинации двух- или четырехквадрантных прерывателей . Исходя из этой терминологии, простой прерыватель постоянного тока называется одноквадрантным прерывателем.

Улучшение теплоотвода

Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.

Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.

Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.

Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:

  1. Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
  2. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
  3. Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
  4. Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.

Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.

Особенности работы инвертора

Сварочный инверторный аппарат — это блок питания, который применяется сейчас в компьютерах. Электрическая энергия преобразовывается в инверторе следующим образом:

  • Напряжение переменное преобразуется в постоянное.
  • Ток постоянной синусоиды преобразовывается в переменный с высокой частотой.
  • Снижается значения напряжения.
  • Ток выпрямляется с сохранением требуемой частоты.

Данная схема сварочного инвертора позволяет снизить его массу и уменьшить габариты. Известно, что старые сварочные аппараты работают по принципу снижения величины напряжения и увеличения силы тока на вторичной обмотке трансформатора. Благодаря большой силе тока есть возможность сваривать металлы дуговым способом. Для увеличения силы тока и снижения напряжения на вторичной обмотке уменьшают число витков и при этом увеличивают сечение проводника. В итоге сварочный аппарат трансформаторного типа весит немало и имеет значительные размеры.

https://youtube.com/watch?v=SDeRg2kbxTE

Для решения данной проблемы предложили схему сварочного инвертора. Принцип основывается на повышении частоты тока до 60 или всех 80 кГц. За счет этого снижается вес и уменьшаются габариты устройства. Для реализации задуманного потребовалось увеличение частоты в тысячи раз, что стало возможным благодаря полевым транзисторам. Между собой транзисторы обеспечивают сообщение с частотой примерно 60−80 кГц. На схему их питания идет постоянный ток, что обеспечивается выпрямителем, в качестве которого используют диодный мост. Выравнивание значения напряжения обеспечивается конденсаторами.

Переменный ток передается на понижающий трансформатор после прохождения через транзисторы. В качестве трансформатора при этом используется катушка, уменьшенная в сотни раз. Катушка используется, потому что частота тока, подающегося на трансформатор, уже увеличена в тысячу раз полевыми транзисторами. В итоге получаются аналогичные данные, как при работе трансформаторной сварки, но с большой разницей в габаритах и массе.

https://youtube.com/watch?v=UyLcUSaH0sM

Поиск поломок и их устранение

Самые распространенные поломки – это низкое напряжение на выходе или его отсутствие. Может такая неисправность в преобразователях напряжения 12/220 В возникнуть по следующим причинам:

  1. Поломка ШИМ-модулятора или полный отказ обоих плеч инвертора. Вторая поломка встречается крайне редко. Чтобы осуществить проверку, можно воспользоваться простейшим пробником на светодиоде. В том случае, если ШИМ-модулятор исправен, светодиод будет часто вспыхивать. Желательно проверить целостность всех соединений и обмотки трансформатора.
  2. Слишком низкое напряжение на выходе – это признак того, что вышло из строя одно плечо. Признак поломки транзистора – это низкая температура радиатора, на котором он установлен.

Все неисправности, которые возникают в схемах, приведенных в статье, устраняются достаточно быстро. И стоимость ремонта таких преобразователей напряжения 12/220 В низкая – все запчасти можно найти буквально на свалке.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Возможно, вам также будет интересно

Несимметричные полумостовые DC/DC-преобразователи напряжения обладают рядом неоспоримых достоинств перед другими схемными решениями: позволяют реализовать переключение транзисторов на нуле напряжения (ПНН), используют только два транзистора на первичной стороне, а напряжение на запертых ключах не превышает Uвх. Это позволяет использовать их в преобразователях напряжения и системах электропитания различного назначения. Известно несколько топологий DC/DC-преобразователей напряжения, отличающихся друг от

Cергей Матюхин Александр Ставцев Значение ударного тока является одной из важнейших характеристик силового полупроводникового прибора (СПП), определяющих его нагрузочную способность. Под ударным током обычно понимают максимальную амплитуду синусоидального импульса прямого тока, при пропускании которого через СПП без последующего приложения обратного напряжения определенные классификационные параметры прибора еще не выходят за пределы нормы. Пропускание через прибор тока

В статье проводится оценка потерь и расчет тепловых характеристик для устройств, в которых используются силовые модули и приборы в дисковых корпусах компании Infineon.

Выводы

  1. Двухтрансформаторный мостовой DC/DC-преобразователь напряжения выгодно отличается от других возможных вариантов мостовых схем минимальным количеством электромагнитных компонентов, улучшенной технологичностью и пониженной стоимостью.
  2. Пульсации выходного напряжения определяются индуктивностью намагничивания силового трансформатора, приведенной к вторичной обмотке (n2Lμ), и активным сопротивлением схемы замещения выходного конденсатора. Выходная пульсация растет при снижении уровня выходного напряжения.
  3. На регулировочную характеристику преобразователя напряжения оказывают влияние падения напряжений на элементах схемы и проводниках печатной платы, индуктивность рассеяния обмоток и частота переключения, что следует учитывать при проектировании.
  4. Расчет силового трансформатора следует проводить с учетом постоянной и переменной составляющих индукции в сердечнике.