Простые повышающие dc/dc преобразователи своими руками для батарейного питания

Введение

Повышающие преобразователи высокой мощности находят широкое применение в автомобильной, индустриальной и телекоммуникационных отраслях

При этом важно, чтобы преобразователи мощностью в 300 Вт и больше не требовали дополнительных средств для отвода тепла и принудительного обдува. Кроме того, во многих случаях существуют конструктивные ограничения по высоте таких преобразователей

Один из удачных методов решения этой задачи — это использование метода разделения (метод чередования) фаз преобразования и распределение силовых элементов по большей поверхности. Другими преимуществами метода разделения фаз преобразования является более высокий КПД, меньшая температура силовых компонентов и меньшая величина пульсаций тока и напряжения на входных и выходных конденсаторах. Цель этой статьи — предложить разработчикам набор формул и выражений для предварительного выбора параметров преобразователя, таких как частота преобразования, количество фаз и контроллеров, а также показать разработчику, как выбрать силовые компоненты: ключевые транзисторы, диоды, дроссели и входные/выходные конденсаторы. Слово «предварительные» существенно, так как огром ное количество нелинейных характеристик силовых компонентов не учитывается в этой статье для простоты восприятия, следовательно, требуется дальнейшее моделирование или макетирование.

Схема импульсного преобразователя напряжения 1,5 — 9 Вольт.

В качестве преобразователя напряжения из 1,5 В в 9 В была выбрана, схема А.Чаплыгина, опубликованная в журнале «Радио» (11.2001г., стр.42).

Эта одна из схем, которая, как нельзя лучше, иллюстрирует выражение: «Всё гениальное – просто».

C1, C2 – 22µF

VT1, VT2 – КТ209К

B1 – 1… 1,5V

И действительно, схема состоит всего из пяти деталей, причём две из них, это конденсаторы фильтров. Вместо выпрямителя высокочастотного напряжения используются база-эмиттерные переходы транзисторов самого генератора. При этом, величина тока базы становится пропорциональной величине тока в нагрузке, что делает преобразователь весьма экономичным.

Другой особенностью генератора является срыв колебаний в отсутствие нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такая «Крона», а точнее, встроенный в неё преобразователь, будет сам включаться тогда, когда от него потребуется что-нибудь запитать и выключаться, когда нагрука будет отключена.

Трансформатор TV1 намотан на кольцевом магнитопроводе 2000НМ размером К7х4х2.
Обмотки III и IV содержат по 28 витков провода Ø0,16мм, а I, II по 4 витка провода Ø0,25мм.

Работа DC DC преобразователя

Для приборов, электропитание которых производится от батареек или аккумуляторов, изменение напряжения до требуемой величины возможно только с использованием DC DC инверторов. Опишем вкратце, как работают DC DC преобразователи повышающего или понижающего типа. Напряжение постоянного тока с его помощью:

  • становится переменным с частотой в несколько десятков или сотен кГц;
  • увеличивается или уменьшается до требуемого значения;
  • проходит выпрямление;
  • поступает в нагрузку.

Такие инверторы называют импульсными. Они отличаются высоким КПД – от 60 до 90%, и имеют широкий диапазон Uвх. Его значение бывает меньше Uвых или гораздо выше его. Например, инвертор, увеличивающий напряжение от 1,5 до 5 В, увеличивает стандартное напряжение батарейки до Uвых, характерного для USB разъема на компьютере. Широко используются и модели, увеличивающие напряжение с 12 до 220 В. Среди понижающих моделей популярны конфигурации, уменьшающие напряжение от 12–80 В до 5 В и от 16–120 В до 12 В (напряжение автомобильного аккумулятора).

Повышающие DC/DC-преобразователи напряжения

Контроллеры этой группы построены по схеме бустерных преобразователей напряжения с интегрированным силовым транзистором и внешним диодом Шоттки. Так же как и рассмотренные выше повышающие преобразователи напряжения, все конверторы имеют встроенную цепь компенсации усилителя сигнала ошибки, специально адаптированную для применения недорогих танталовых конденсаторов на выходе преобразователя. Номенклатура и краткие электрические характеристики микросхем этой группы приведены в таблице 3.

Контроллеры MP1517 и MP1527 — самые мощные в этой группе. Каждый из них имеет интегрированный ключевой транзистор с сопротивлением канала 150 мОм и обеспечивает ток нагрузки до 3 А (рекомендуемое значение — до 1,5 А). Схема включения и типовой КПД преобразователя напряжения на базе MP1517 показаны на рис. 17, структурная схема — на рис. 18. Контроллеры построены по схеме ШИМ с регулировкой по току и фиксированной частотой преобразования (1,1 МГц у MP1517 и 1,3 МГц у MP1527). Микросхемы имеют защиту от низкого входного напряжения, обрыва нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска. Низкое напряжение ОС MP1517 (0,7 В) позволяет использовать его в качестве мощного драйвера светодиодов и светодиодных ламп без дополнительного усилителя тока. Микросхема MP1527 имеет дополнительный двунаправленный вывод FAULT («Авария»). Если в системе используется несколько преобразователей напряжения MP1527, то имеется возможность соединить все выводы FAULT для одновременного выключения всех контроллеров в случае возникновения аварийной ситуации хотя бы в одном из них. Контроллеры упакованы в миниатюрные корпуса для автоматизированного монтажа QFN16 (4×4 мм), MP1527 также выпускается в корпусе TSSOP14.

Рис. 18. Структурная схема преобразователя напряжения МР1517

Самый маломощный контроллер в рассматриваемой группе — MP1522 в корпусе для поверхностного монтажа SOT23-5 (рис. 19). В нем использована схемотехника преобразователя напряжения с постоянным пиковым током дросселя и переменной частотой коммутации. Он имеет интегрированный ключевой транзистор с сопротивлением канала 500 мОм и обеспечивает ток нагрузки до 0,3 А.

Рис. 19. МР1522 в корпусе для поверхностного монтажа SOT23-5

Для применений, требующих постоянной частоты коммутации, альтернативой MP1522 служит микросхема MP1541 (рисунок 20), также выпускающаяся в корпусе SOT23-5. Она позволяет реализовывать надежные, миниатюрные и недорогие преобразователи напряжения с током нагрузки до 550 мА.

Рис. 20. Микросхема МР1541

В линейке повышающих преобразователей MPS есть две специализированные микросхемы для питания TFT-панелей — MP1530 и MP1531 (рис. 21). Микросхемы идентичны по структуре и характеристикам и отличаются только частотами преобразования (1,4 МГц у MP1530 и 250 кГц у MP1531). Каждая из них содержит повышающий преобразователь напряжения и два линейных регулятора с положительным и отрицательным выходным напряжением, питающихся от схем с накачкой заряда. Ток нагрузки основного канала может достигать 500 мА, линейных регуляторов — до 10 мА.

Помимо своего основного назначения микросхемы могут применяться и для построения источников питания других устройств, содержащих, например, цифровые микросхемы (выход +5 В) и операционные усилители (выходы ±5…±15 В).

Завершает группу повышающих преобразователей напряжения новая микросхема MP1542, разработанная в начале 2005 года. Ее схема включения показана на рис. 22. Контроллер имеет интегрированный ключевой транзистор с сопротивлением канала 180 мОм и обеспечивает ток нагрузки до 2 А. Частота преобразования может выбираться из значений 0,7 МГц или 1,3 МГц с помощью вывода FSEL. Микросхема имеет защиту от низкого входного напряжения, КЗ нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска, выпускается в миниатюрном корпусе MSOP8.

Рис. 22. Схема включения МР1542

Трех- и четырехфазные повышающие преобразователи

Несмотря на то, что сейчас на рынке господствуют двухфазные преобразователи, современные контроллеры позволяют создавать блочный дизайн многофазных контроллеров, где две фазы повышения представляют один блок. Электрическая схема четырехфаз-ного преобразователя показана на рис. 5, а временная диаграмма — на рис. 6. Эта схема позволяет получать 48 В при 8 А от входа при входном напряжении в диапазоне 12-24 В и способна поддерживать выходное напряжение 48 В при падении входного напряжения до 6 В, с соответствующим снижением выходного тока.

Рис. 5. Четырехфазный синхронный повышающий преобразователь, V0 48 В на 8 А, Vin от 5 до 24 В

Рис. 6. Временная диаграмма четырехфазного повышающего преобразователя. Ch1–Ch4 напряжения на истоках Q1–Q4 соответственно (50 В/Div)

В этой схеме двухфазные контроллеры соединены для управления четырехфазным преобразователем. Контроллер U1 работает в качестве ведущего, а U2 — в качестве ведомого. U1 генерирует, а U2 принимает тактовый сигнал. Контроллер U1 создает разницу между фазой 1 и фазой 3 в 90 градусов, однако разница между фазой 1 и фазой 2, а также фазой 3 и фазой 4 остается 180 градусов. Четырехфазное повышение легко приводится к трехфазному путем отключения четвертой фазы на L4 и Q4, а ножка Phasemode контроллера U1 подключается к выходу 3V8 контроллера. В этом случае все три фазы будут отличаться друг от друга на 120°.

Нюансы создания схем понижающих преобразователей

В реальности работа схемы инвертора отличается от теоретического описания. При включении и выключении возможны промедления, активное сопротивление отлично от нуля, на работе схемы сказывается качество используемых элементов и паразитная емкость монтажа. Значение индуктивности определяет 2 режима работы понижающего преобразователя:

  1. При малой индуктивности он функционирует в режиме разрывных токов, что не позволяет использовать конвектор с источниками питания.
  2. При высокой индуктивности чоппер работает по принципу неразрывных токов, и есть возможность с использованием фильтров на выходе получить U=const с допустимыми пульсациями. В таком режиме функционируют и модели, увеличивающие напряжение.

С целью увеличения КПД вместо разрядного диода VD можно использовать транзистор MOSFET. Его в нужное время открывает управляющая схема. Такие инверторы называют синхронными и рекомендуются к использованию при достаточно большой мощности инвертора.

Вычисление максимальных токов и напряжений на силовых компонентах

Пиковое исреднее значения токов — важный фактор при выборе дросселей для очень мощных повышающих преобразователей. Резонансная частота дросселя не так важна для частоты преобразования ниже 300 кГц, но ее надо учитывать для более высокой частоты преобразования. Средний ток индуктивности I_Lаv ипиковый I_Lрк могут быть определены следующими выражениями:

I_Lаv=Iph ;

I_Lрк=Iph + Δ I/2.

Токи I_Lаv и I_Lрк нужно выбирать, основываясь на данных производителя дросселей с учетом роста температуры и тока насыщения. Максимальное напряжение на МОSFЕТ-ключе VQ приблизительно равно V, то есть VQ = V. Ток IQrms через ключевой транзистор можно описать следующей формулой:

IQrms=Iph × √ Dmx × √ 1 + (1/3) × (Δ I/Iph)2

В первом приближении мощность рассеивания на МОSFЕТ (РQ) в режиме стационарной нагрузки может быть описана следующим выражением:

Повышающие преобразователи напряжения

Мой лабораторный блок питания работает от блока ноутбука на 19V 90W, но этого не хватает для проверки последовательно подключенных светодиодов. Последовательная LED цепочка требует от 30В до 50В. Покупать готовый блок на 50-60 Вольт и 150W оказалось дороговато, около 2000 руб. Поэтому заказал первый повышающий стабилизатор за 500 руб. с повышением до 50В. После проверки оказалось, что он максимум до 32В, потому что на входе и выходе стоят конденсаторы на 35V. Убедительно написал продавцу своё возмущение, и через пару дней мне вернули денежку.

Повышатель Tusotek

Заказал второй до 55V под брендом Tusotek за 280руб, повышатель оказался отличный. С 12В легко повышает до 60V, выше крутить построечный резистор не стал, вдруг сгорит. Радиатор приклеен на теплопроводящий клей, поэтому маркировку микросхемы посмотреть не удалось. Охлаждение сделано немного неправильно, теплоотводная площадка диода Шотки и контроллера прикреплена к плате, а не к радиатору.

Работа DC DC преобразователя

Для приборов, электропитание которых производится от батареек или аккумуляторов, изменение напряжения до требуемой величины возможно только с использованием DC DC инверторов. Опишем вкратце, как работают DC DC преобразователи повышающего или понижающего типа. Напряжение постоянного тока с его помощью:

  • становится переменным с частотой в несколько десятков или сотен кГц;
  • увеличивается или уменьшается до требуемого значения;
  • проходит выпрямление;
  • поступает в нагрузку.

Такие инверторы называют импульсными. Они отличаются высоким КПД – от 60 до 90%, и имеют широкий диапазон Uвх. Его значение бывает меньше Uвых или гораздо выше его. Например, инвертор, увеличивающий напряжение от 1,5 до 5 В, увеличивает стандартное напряжение батарейки до Uвых, характерного для USB разъема на компьютере. Широко используются и модели, увеличивающие напряжение с 12 до 220 В. Среди понижающих моделей популярны конфигурации, уменьшающие напряжение от 12–80 В до 5 В и от 16–120 В до 12 В (напряжение автомобильного аккумулятора).

Преобразователь напряжения с гальванической развязкой

Изолированные dc dc преобразователи требуются в широком диапазоне применений, включая измерение мощности, промышленные программируемые логические контроллеры (PLC), источники питания с биполярным транзистором с изоляцией (IGBT) и т. д. Они используются для обеспечения гальванической изоляции, повышения безопасности и помехоустойчивости.

В зависимости от точности регулирования выходного напряжения, dc dc преобразователи с гальванической развязкой делятся на три категории:

  • регулируемые;
  • нерегулируемые;
  • полурегулируемые.

У таких устройств входная цепь изолирована от выходной. Самая простая схема прямоходового преобразователя имеет две изолированных цепи: в одной – ключевой транзистор и трансформатор, в другой – катушка индуктивности, конденсатор, нагрузочное сопротивление. На транзистор подается импульсный управляющий сигнал с рабочим циклом D.

  1. Когда транзистор открыт, то диод VD пропускает ток, а D1 заперт. Ток протекает по контуру через катушку, конденсатор и нагрузку. В катушке идет накопление энергии;
  2. При запирании транзистора напряжение на трансформаторных обмотках изменяет знак, поэтому VD закрывается, а D1 начинает пропускать ток, который протекает по контуру между катушкой, D1, конденсатором и нагрузочным сопротивлением. Выходное напряжение будет равно:

Uout = (w2/w1) x D, где w2, w1 – количество витков двух обмоток трансформатора.

Так работает схема прямоходового однотактного преобразователя. Существуют обратноходовые схемы и двухтактные, с подачей энергии на выход в течение обоих преобразовательных циклов. Для снижения потерь вместо диодов применяются МОП-транзисторы.

Причина ограничения рабочего диапазона в обычном двухключевом обратноходовом DC/DC-преобразователе

В режиме непрерывных токов (continuous conduction mode, CCM), когда ток через индуктивность не падает до нуля, выходное напряжение схемы, приведенной на рис. 1, определяется следующим выражением:

где n — коэффициент трансформации трансформатора, а D — коэффициент заполнения.

Если эффективность обратноходового преобразователя равна единице, то выходная мощность в режиме прерывистых токов (discontinuous conduction mode, DCM) может быть выражена как:

где L1 — индуктивность первичной обмотки; Ip — пиковый ток в обмотке L1; fs — рабочая частота преобразования; Rо — сопротивление нагрузки; D — коэффициент заполнения; Ts — период переключения.

Из уравнения (2) и (3) выходное напряжение в режиме DCM определяется как:

На рис. 1 оба ключа включаются и выключаются одновременно, как и в двухключевом прямоходовом преобразователе (не путайте с двухтактным: там ключи переключаются поочередно!). Работу обратноходового трансформатора проще и понятнее всего описать на примере решения с двумя обмотками. Энергия в таком трансформаторе подается на его первичную обмотку, когда ключи первичной цепи S1 и S2 открыты; затем, когда ключи разомкнуты, энергия выделяется на вторичной обмотке трансформатора. Это происходит в случае, если отраженное в первичную обмотку трансформатора напряжение nVo оказывается ниже входного напряжения Vi преобразователя. Однако эта энергия также возвращается на входную шину, если nVo выше Vi (рис. 2). Но в обычной двухключевой топологии, для того чтобы перенести накопленную в сердечнике энергию во вторичную цепь, в установившемся состоянии nVo должно быть ниже Vi. Следовательно, из формул (1) и (4) ограничения в рабочем диапазоне схемы, приведенной на рис. 1, могут быть рассчитаны как:

D< 0,5 для режима CCM,

     для режима DCM.

Рис. 2. Режим возврата накопленной энергии в схеме, представленной на рис. 1, в условиях nVo>Vi

Классификация Dc Dc преобразователей

Вообще Dc Dc преобразователи можно разделить на несколько групп.

Понижающий, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50 В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий преобразователь иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающий, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5 В на выходе можно получить напряжение до 30 В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальный Dc Dc преобразователь – SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14 В, а требуется получить стабильное напряжение 12 В.

Инвертирующий Dc Dc преобразователь — inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ (операционных усилителей).

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о Dc Dc преобразователях следует хотя бы в общих чертах разобраться с теорией.

Нюансы создания схем понижающих преобразователей

В реальности работа схемы инвертора отличается от теоретического описания. При включении и выключении возможны промедления, активное сопротивление отлично от нуля, на работе схемы сказывается качество используемых элементов и паразитная емкость монтажа. Значение индуктивности определяет 2 режима работы понижающего преобразователя:

  1. При малой индуктивности он функционирует в режиме разрывных токов, что не позволяет использовать конвектор с источниками питания.
  2. При высокой индуктивности чоппер работает по принципу неразрывных токов, и есть возможность с использованием фильтров на выходе получить U=const с допустимыми пульсациями. В таком режиме функционируют и модели, увеличивающие напряжение.

С целью увеличения КПД вместо разрядного диода VD можно использовать транзистор MOSFET. Его в нужное время открывает управляющая схема. Такие инверторы называют синхронными и рекомендуются к использованию при достаточно большой мощности инвертора.

Пример

Давайте рассмотрим преобразователь, который дает 24 В при 6 А в непрерывном режиме при входном напряжении в диапазоне от 8 до 18 В.

Начнем с выбора дросселя для одной фазы и эффективности преобразования не меньше чем 95%. Средний ток индуктивности при минимальном входном напряжении 8 В Vin_min будет 19 А, если же добавить ток пульсаций, то пиковый ток уже будет 25 А. Для снижения тока в два раза мы выберем двухфазный режим работы и частоту преобразования 250 кГц. Средний ток I_Lav

уже будет 9,5 А. В качестве индуктивности из серии PB2020 дросселей фирмы Pulse выберем PB2020.153. Для этого дросселя пиковый ток составляет 10,5 А, что ниже тока насыщения с хорошим запасом.

Рис. 3. Двухфазный повышающий преобразователь, V0 24 В на 6 А, Vin от 8 до 18 В

Средний и максимальный ток дросселя будут определять выбор ключевого транзистора. Максимальное значение напряжения на транзисторе 25 В. В качестве ключа мы выберем НАТ2169Н с напряжением 40 Ви LTC3862 (фирмы Linear Technology) в качестве контроллера, который имеет встроенные MOSFET-драйверы. Потери транзистора каждой фазы оценим на уровне 1,6 Вт при минимальном входном напряжении. В качестве выпрямительного диода на 10 А, 40 В выбираем диод Шоттки PDS1040. Мощность рассеивания на диодах каждой фазы оценим как 1,5 Вт. Оба ключевых элемента — транзистор и диод — потребуют дополнительного пространства на печатной плате для отвода тепла. Электрическая схема двухфазного повышающего преобразователя представлена на рис. 3, а временные диаграммы — на рис. 2. В дальнейшем эта схема может быть использована как основа для моделирования и улучшения, если это потребуется.

Рис. 4. Двухфазный синхронный повышающий преобразователь, Vo 24 В на 8,5 А, Vin от 8 до 18 В

Широтно-импульсная модуляция

Как сделать бензогенератор своими руками

Широтно-импульсная модуляция (ШИМ) – это тип сигнала, используемый для изменения количества энергии, отправляемой на нагрузку. Он широко используется в цифровых схемах, которые должны эмулировать аналоговый сигнал.


Импульсный сигнал

Вырабатываемые импульсы являются прямоугольными, относительная ширина которых может изменяться по сравнению с периодом. Результат этого соотношения называется рабочим циклом, а его единицы представлены в процентах:

D = t/T x 100%, где:

  • D – рабочий цикл;
  • t – время, когда сигнал положительный;
  • Т – период.

Рабочий цикл изменяется таким образом, что среднее значение сигнала является приблизительным напряжением, которое требуется получить. Меняя значение D, можно управлять ключевым транзистором, что применяется почти во всех схемах импульсных преобразователей.

Программирование

Нужно подать ШИМ-сигнал с частотой, которая была выбрана при расчете. Сначала коэффициент заполнения пусть будет нулевой, а изменятся он будет энкодером, что очень удобно для проверки.

  • SYS -> Debug Serial Wire
  • RCC -> High Speed Clock (HSE): Crystal/Ceramic Resonator
  • Таймер 1, генерация ШИМ-сигнала 40 кГц.
  • Таймер 3, режим энкодера (счет от 0 до 100)

Ну и код, где в главном цикле ограничен коэффициент заполнения до 98% (это можно было сделать проще, установив наибольшее значение 98, а не 100 у Таймера 3):

/* USER CODE BEGIN PV */ uint8_t Enc_Counter = 0; /* USER CODE END PV */ /* encoder (count 0-100) */ HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL); /* pwm 40khz */ HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3); TIM1->PSC = 12-1; TIM1->ARR = 100-1; TIM1->CCR3 = 0; /* USER CODE BEGIN WHILE */ while (1) { Enc_Counter = TIM3->CNT; if(Enc_Counter > 98){ TIM3->CNT = 0; Enc_Counter = 0; } TIM1->CCR3 = Enc_Counter; HAL_Delay(50); /* USER CODE END WHILE */

Виды DC DC преобразователей напряжения

Рассмотрим основные типы таких устройств:

  1. Понижающие (альтернативные названия – buck, chopper, step-down). Обычно имеют Uвых
  2. Повышающие (альтернативные названия – boost, бустеры, step-up). Имеют Uвых˃Uвх. К примеру, при Uвх=5 В удается получить Uвых до 30 В, с возможностью его высокоточной регулировки и стабилизации.
  3. Универсальные (SEPIC). Имеют Uвых, удерживаемое на фиксированном уровне. При этом есть возможность получить и Uвых
  4. Инвертирующие (inverting converter). Главная задача таких устройств – получение Uвых обратной полярности по отношению к источнику питания. Они оптимально подходят для использования в ситуациях, когда нужно 2-полярное питание, к примеру, для питания операционных усилителей.

Инверторы всех перечисленных типов бывают со стабилизацией и без нее. Uвых бывает гальванически связанным с Uвх. Есть модели с гальванической развязкой напряжений. Подходящие характеристики и особенности инвертора зависят от характеристик прибора, в составе которого он будет применяться.

Виды DC DC преобразователей напряжения

Рассмотрим основные типы таких устройств:

  1. Понижающие (альтернативные названия – buck, chopper, step-down). Обычно имеют Uвых
  2. Повышающие (альтернативные названия – boost, бустеры, step-up). Имеют Uвых˃Uвх. К примеру, при Uвх=5 В удается получить Uвых до 30 В, с возможностью его высокоточной регулировки и стабилизации.
  3. Универсальные (SEPIC). Имеют Uвых, удерживаемое на фиксированном уровне. При этом есть возможность получить и Uвых
  4. Инвертирующие (inverting converter). Главная задача таких устройств – получение Uвых обратной полярности по отношению к источнику питания. Они оптимально подходят для использования в ситуациях, когда нужно 2-полярное питание, к примеру, для питания операционных усилителей.

Инверторы всех перечисленных типов бывают со стабилизацией и без нее. Uвых бывает гальванически связанным с Uвх. Есть модели с гальванической развязкой напряжений. Подходящие характеристики и особенности инвертора зависят от характеристик прибора, в составе которого он будет применяться.

Повышающий преобразователь

Повышающий преобразователь (Step-Up Converter, Boost Converter) также обычно строится на основе однообмоточного дросселя (N1 = N2). На первом этапе преобразования, когда ключ S1 замкнут, к обмотке дросселя приложено полное напряжение питания (VL1 = VIN), а вот на втором есть разница между входным и выходным напряжениями (VL1 = VOUT – VIN), как показано на рисунке 5. Подставляя эти значения в формулу 9, получим формулу 12:

$$V_{IN}\times t_{ON}=-\left(V_{OUT}-V_{IN} \right)\times t_{OFF}\qquad{\mathrm{(}}{12}{\mathrm{)}}$$

Из формулы 12 теперь можно получить уравнение для регулировочной характеристики (формула 13):

$$V_{OUT}=V_{IN}\times \frac{t_{ON}+t_{OFF}}{t_{OFF}}=V_{IN}\times \frac{1}{1-D}\qquad{\mathrm{(}}{13}{\mathrm{)}}$$

Рис. 5. Принцип работы повышающего преобразователя

Как и в понижающем преобразователе, формула 13 накладывает ограничения на соотношение напряжений VIN и VOUT. При VOUT < VIN правая часть формулы 13 изменит свой знак, и дроссель перестанет отдавать энергию. Поэтому повышающий преобразователь может только увеличивать входное напряжение.

Общее понятие о преобразователях DC DC

Линейные стабилизаторы, используемые в трансформаторных БП, поддерживают постоянное выходное напряжение благодаря элементу схемы, например, транзистору, на котором осаждается избыточное напряжение. Система управления постоянно контролирует выходное напряжение и корректирует его падение на этом элементе.

Линейные стабилизаторы имеют некоторые преимущества:

  • отсутствие помех;
  • низкая цена и простота эксплуатации.

Но такое устройство не лишено недостатков:

  • избыточное напряжение преобразуется в тепло;
  • нет возможности увеличить напряжение.

Преобразователи dc в dc импульсного типа представляют собой схемы, способные конвертировать один уровень напряжения в другой, используя катушки и конденсаторы, временно сохраняя в них энергию и разряжая их таким образом, чтобы получить конечные желаемые уровни сигнала.

Простейший повышающий DC-DC преобразователь

Рубрики:
Своими руками

Yuriy

Здравствуйте, дорогие друзья. Сегодня я хочу поделиться с вами еще одной, гениальной в своей простоте, схемой повышающего DC-DC преобразователя (о первой схеме я писал в статье Простейшая схема питания светодиода от батарейки АА или ААА). Основываясь на этой схеме, я собрал два устройства. Первое устройство я обозвал «Модуль Чаплыгина«. Изображение этого модуля вы видите выше. Второе устройство представляет собой имитацию батареи «Крона«.

Автором приведенной ниже схемы (в несколько измененном виде) является А. Чаплыгин. Смотрите: А. Чаплыгин «ПРОСТОЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ», журнал «Радио» №11 2001г.

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2.  Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов. Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке! При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле:  w2=w1 (UВых. — UBх. + 0,9)/(UВx — 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!!) и обратного напряжения эмиттер — база (оно должно быть больше удвоенной разности входного и выходного напряжений!!!).

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы… Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

А. Чаплыгин «ПРОСТОЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ», журнал «Радио» №11 2001г.

Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра

Повышающие преобразователи (регуляторы II типа)

Они применяются для электропитания потребителей, которым необходимо напряжение, большее, чем напряжение источника энергии. Принцип работы DC/DC преобразователя повышающего типа аналогичен понижающему конвертору. Устройство состоит из тех же элементов, но имеет другую схему подключения. Открывание и закрывание транзистора также осуществляется с помощью настроек ШИМ.

Открытый ключ обеспечивает протекание тока через транзистор и дроссель. При этом катушка запасает электроэнергию, а закрытый диод не позволяет разряжаться выходному конденсатору, питающему нагрузочное сопротивление. Как только напряжение падает ниже заданного уровня, происходит закрывание транзистора. В результате диод открывается и начинается подзарядка конденсатора. Входное напряжение суммируется с энергией, которая генерируется на катушке. Благодаря этому выходной сигнал становится выше, чем исходный. После достижения верхней границы напряжения, ключ снова закрывается, и цикл начинается заново.

На XL6009

Стабилизатор преобразователь XL6009

Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до  моделей с индикаторами напряжения.

Пример эффективности:

92% при преобразовании 12V в 19V, нагрузка 2А.

В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.

Типовая схема включения XL6009