Химия. 10 класс

Содержание

Целлюлоза (клетчатка)

Целлюлоза – наиболее распространенный растительный
полисахарид. Она обладает большой механической прочностью и исполняет роль
опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок
представляет собой почти чистую целлюлозу.

Как и у крахмала, структурной единицей целлюлозы
является D-
глюкопираноза, звенья которой связаны (1-4) -гликозидными связями. Однако, от
крахмала целлюлоза отличается b- конфигурацией гликозидных связей
между циклами и строго линейным строением.

Целлюлоза состоит из нитевидных молекул, которые
водородными связями гидроксильных групп внутри цепи, а также между соседними
цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую
механическую прочность, волокнистость, нерастворимость в воде и химическую
инертность, что делает целлюлозу идеальным материалом для построения клеточных
стенок.

b- Гликозидная связь не разрушается пищеварительными ферментами человека,
поэтому целлюлоза не может служить ему пищей, хотя в определенном количестве
является необходимым для нормального питания балластным веществом. В желудках
жвачных животных имеются ферменты, расщепляющие целлюлозу, поэтому такие
животные используют клетчатку в качестве компонента пищи.

Несмотря на нерастворимость целлюлозы в воде и обычных
органических растворителях, она растворима в реактиве Швейцера (раствор
гидроксида меди в аммиаке), а также в концентрированном растворе хлористого
цинка и в концентрированной серной кислоте.

Как и крахмал, целлюлоза при кислотном гидролизе дает
глюкозу.

Целлюлоза – многоатомный спирт, на элементную ячейку
полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы
характерны реакции этерификации (образование сложных эфиров). Наибольшее
практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

целлюлоза

+ 3n HNO3

H2SO4

––––

тринитрат целлюлозы

+ 3nH2О

Полностью
этерифицированная клетчатка известна под названием пироксилин, который после
соответствующей обработки превращается в бездымный порох. В зависимости от
условий нитрования можно получить динитрат целлюлозы, который в технике
называется коллоксилином. Он так же используется при изготовлении пороха и
твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают
целлулоид.

При взаимодействии целлюлозы с уксусным ангидридом в
присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

+ 3n

триацетилцеллюлоза

+ 3n СH3СOOН

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для
изготовления негорючей кинопленки и ацетатного шелка. Для этого ацетилцеллюлозу
растворяют в смеси дихлорметана и этанола и этот раствор продавливают через
фильеры в поток теплого воздуха. Растворитель испаряется и струйки раствора
превращаются в тончайшие нити ацетатного шелка.

Целлюлоза не дает реакции «серебряного зеркала».

Говоря о применении целлюлозы, нельзя не сказать о том, что большое
количество целлюлозы расходуется для изготовления различной бумаги. Бумага –
это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной
бумагоделательной машине.

Из приведенного выше уже видно, что использование
целлюлозы человеком столь широко и разнообразно, что применению продуктов
химической переработки целлюлозы можно посвятить самостоятельный раздел.

Возможные проблемы

В качестве основного загрязнителя стеклянной посуды выступает жирный налет, от которого необходимо избавляться. Проблему поможет решить раствор щелочи, а также горячая хромовая смесь. Далее пробирка промывается дистиллированной водой. При отсутствии щелочи можно воспользоваться синтетическим средством для мытья посуды. После завершения обезжиривания стекло промывают раствором хлорида олова, ополаскивают водой. Для приготовления растворов используют дистиллированную воду. В случае ее отсутствия можно воспользоваться дождевой водой. В качестве восстановителей, позволяющих из раствора осаждать чистое вещество, применяют глюкозу и формальдегид. С альдегидом трудно рассчитывать на получение качественного серебряного покрытия, а вот моносахарид (глюкоза) дает равномерный и прочный серебряный слой на поверхности зеркала.

Как провести реакцию в домашних условиях

Для того чтобы провести восстановление серебра из его оксида не в лабораторных условиях, необходимо в воде растворить азотнокислое серебро. Взять его можно в аптеке. Это ляписный карандаш. Воду лучше использовать дистиллированную. Получить ее можно простой конденсацией воды, испаряющейся из кипящего чайника. Если исходить из полулитровой емкости, то в таком количестве раствора азотнокислого серебра необходимо растворить еще нашатырный спирт (1 ч. л.). Сюда же нужно добавить 2-3 капли формальдегида — формалина.

Все реактивы вступают в реакцию не сразу, поэтому взболтайте как следует раствор и оставьте его в покое примерно на сутки. Если все пройдет успешно, то за этот срок ваша банка покроется тонким металлическим слоем. Таким же слоем покроется тот предмет, который вы поместите в банку.

Получение сахарозы из сахарного тростника:

Сахарный тростник является основной мировой культурой для производства сахара. На его долю приходится до 65 % мирового производства сахара.

Сахарный тростник до начала цветения срезают. Срезанные стебли измельчают и размалывают. Из полученной массы отжимают сок, в котором содержится до 0,03 % белковых веществ, 0,1 % зернистых веществ (крахмала), 0,22 % азотосодержащей слизи, 0,29 % солей (большей частью органических кислот), 18,36 % сахара, 81 % воды и очень небольшое количество ароматических веществ, придающих сырому соку своеобразный запах.

Для очистки сока к нему добавляют свежегашеную известь – Са(ОН)2 и нагревают. Сахароза вступает в химическую реакцию с гидроксидом кальция, в результате чего образуется растворимый в воде сахарат кальция. Кроме того, другие вещества, содержащиеся в соке, также вступают в реакцию с гидроксидом кальция, образуя малорастворимые и нерастворимые соли, которые выпадают в осадок и отфильтровывают.

Затем через раствор, чтобы разложить сахарат кальция и нейтрализовать избыточный гидроксид кальция, пропускают углекислый газ – СО2. В итоге образуется карбонат кальция – СаСО3, который выпадает в осадок. Выпавший в осадок карбонат кальция отфильтровывают, а раствор выпаривают в вакуумных аппаратах до получения кристаллов сахарозы. На данной стадии производства сахароза все еще содержит примеси – мелассу и имеет коричневый цвет. Меласса придает сахарозе ярко выраженный естественный аромат и вкус. Полученный продукт именуется коричневым сахаром или тростниковым нерафинированным сахаром. Он (коричневый сахар) пригоден в пищу. Его можно использовать в пищу как есть либо подвергнуть дополнительной очистке.

На последней стадии производства сахарозу подвергают дополнительной очистке и обесцвечиванию. В конечном итоге получают рафинированный (очищенный) сахар, имеющий белый цвет.

Реакция — серебряное зеркало

Дает реакцию серебряного зеркала с алифатическими альдегидами, а при нагревании и с ароматическими.

Для кетонов реакция серебряного зеркала отрицательна, поскольку такие мягкие окислители, как Ag2O, на них не действуют. Окисление кетонов происходит в присутствии сильных окислителей в жестких условиях и сопровождается разрывом С — гС — связи. Образуются кислоты с числом углеродных атомов меньше, чем в исходном кетоне.

Для кетонов реакция серебряного зеркала отрицательна, поскольку такие мягкие окислители, как Ag2O, на них не действуют. Окисление кетонов происходит в присутствии сильных окислителей в жестких условиях и сопровождается разрывом С — С-связи. Образуются кислоты с числом углеродных атомов меньше, чем в исходном кетоне.

В результате реакции серебряного зеркала уксусный альдегид окисляется до уксусной кислоты.

Фруктоза дает реакцию серебряного зеркала и восстанавливает Си ( ОН) 2, хотя и не содержит альдегидной группы. Это объясняется действием на фруктозу щелочей, которые вызывают ее превращение в глюкозу и расщепление на ряд легко окисляющихся веществ.

Глюкоза дает реакцию серебряного зеркала, при окислении дает только одну монокарбоновую кислоту, образует сложный эфир с пятью молекулами уксусной кислоты. Фруктоза не дает реакции серебряного зеркала, при окислении дает две кислоты, как и глюкоза, образует сложный эфир с пятью молекулами уксусной кислоты. Из этих данных следует, что глюкоза содержит альдегидную группу, а фруктоза — карбонильную. Образование сложного эфира говорит о том, что оба моносахарида являются пятиатомными спиртами. Обе молекулы имеют нормальные углеродные цепи, в которых тетраэдры СНОН могут вращаться вокруг о-связей. При этом молекулы изгибаются и через атом кислорода замыкаются в шестичленное кольцо, в котором гидроксилы находятся по обе стороны от плоскости.

Называется также реакцией серебряного зеркала, так как в присутствии альдегидов ( а в редких случаях и некоторых кетонов) из раствора, содержащего нон Ag ( NH3), выпадает осадок металлического серебра и нередко отлагается на стенках пробирки в виде зеркального покрытия.

Крахмал не дает реакции серебряного зеркала, однако ее дают продукты его гидролиза. Очевидно, макромолекулы крахмала состоят из многих молекул циклической а-глюкрзы.

Данная реакция и реакция серебряного зеркала являются качественными реакциями на альдегиды.

Для моносахаридов характерны реакция серебряного зеркала и взаимодействие с фелинговой жидкостью. Эти реакции являются качественными. Они характерны и для альдоз и, в противоположность кетонам, для кетоз.

Сахароза не дает реакции серебряного зеркала и не обладает восстановительными свойствами.

Крахмал не дает реакции серебряного зеркала, однако ее дают продукты его гидролиза. Макромолекулы крахмала состоят из многих молекул циклической а-глкжозы.

Для чего применяются реакции серебряного зеркала.

Сахароза не дает реакции серебряного зеркала и не обладает восстановительными свойствами.

Крахмал не дает реакции серебряного зеркала, однако ее дают продукты его гидролиза. Макромолекулы крахмала состоят из многих молекул циклической а-глкжозы.

Углеводы. Генетический D- ряд сахаров

«Углеводы широко распространены в природе и выполняют в живых
организмах различные важные функции. Они поставляют энергию для биологических
процессов, а также являются исходным материалом для синтеза в организме других
промежуточных или конечных метаболитов. Углеводы имеют общую формулу Cn(H2O)m, откуда и возникло название
этих природных соединений.

Углеводы делятся на простые сахара или моносахариды и полимеры этих
простых сахаров или полисахариды. Среди полисахаридов следует выделить группу
олигосахаридов, содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним
относятся, в частности, дисахариды.

Моносахариды являются гетерофункциональными соединениями. В их молекулах
одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько
гидроксильных групп, т.е. моносахариды представляют собой
полигидроксикарбонильные соединения — полигидроксиальдегиды и
полигидроксикетоны. В зависимости от этого моносахариды подразделяются на
альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится
кетогруппа). Например, глюкоза – это альдоза, а
фруктоза – это кетоза.

 (глюкоза
(альдоза))                    (фруктоза (кетоза))

В зависимости от числа атомов углерода в молекуле
моносахарид называется тетрозой, пентозой, гексозой и т.д. Если объединить
последние два типа классификации, то глюкоза – это альдогексоза, а фруктоза –
кетогексоза. Большинство встречающихся в природе моносахаридов – это пентозы и
гексозы.

Моносахариды изображаются в виде проекционных формул
Фишера, т.е. в виде проекции тетраэдрической модели атомов углерода на
плоскость чертежа. Углеродная цепь в них записывается вертикально. У альдоз
наверху помещают альдегидную группу, у кетоз – соседнюю с карбонильной
первичноспиртовую группу. Атом водорода и гидроксильную группу при
асимметрическом атоме углерода располагают на горизонтальной прямой.
Асимметрический атом углерода находится в образующемся перекрестье двух прямых
и не обозначается символом. С групп, расположенных вверху, начинают нумерацию
углеродной цепи. (Дадим определение асимметрическому атому углерода: это атом
углерода, связанный с четырьмя различными атомами или группами).

Установление абсолютной конфигурации, т.е. истинного
расположения в пространстве заместителей у асимметрического атома углерода
является весьма трудоемкой, а до некоторого времени было даже невыполнимой
задачей. Существует возможность характеризовать соединения путем сравнения их конфигураций
с конфигурациями эталонных соединений, т.е. определять относительные
конфигурации.

Относительная конфигурация моносахаридов определяется по
конфигурационному стандарту – глицериновому альдегиду, которому еще в конце
прошлого столетия произвольно были приписаны определенные конфигурации,
обозначенные как D- и L- глицериновые
альдегиды. С конфигурацией их асимметрических атомов углерода сравнивается
конфигурация наиболее удаленного от карбонильной группы асимметрического атома
углерода моносахарида. В пентозах таким атомом является четвертый атом углерода
4), в гексозах – пятый (С5), т.е.
предпоследние в цепи углеродных атомов. При совпадении конфигурации этих атомов
углерода с конфигурацией D-
глицеринового альдегида моносахарид относят к D- ряду. И, наоборот, при совпадении с конфигурацией L- глицеринового
альдегида считают, что моносахарид принадлежит к L- ряду. Символ D означает, что
гидроксильная группа при соответствующем асимметрическом атоме углерода в
проекции Фишера располагается справа от вертикальной линии, а символ L- что
гидроксильная группа расположена слева.

Получение и производство глюкозы:

В природе глюкоза образуется в результате реакции фотосинтеза и содержится в различных частях растений: листьях и плодах. У животных глюкоза образуется в результате расщепления гликогена.

Глюкоза образуется в ходе следующих химических реакций:

1. реакции сахарозы с водой (гидролиз сахарозы):

С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6 (tо, kat = H2SO4, HCl).

При гидролизе (при нагревании в присутствии ионов водорода) сахароза расщепляется на составляющие ее моносахариды – глюкозу и фруктозу за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования сахарозы из моносахаридов.

Аналогичная реакция происходит в кишечнике у живых организмов при попадании в него сахарозы. В кишечнике сахароза под действием ферментов быстро гидролизуется на глюкозу и фруктозу.

2. реакции мальтозы с водой (гидролиз мальтозы):

С12Н22О11 + Н2О → 2С6Н12O6 (tо, kat = H2SO4, HCl).

При гидролизе (при нагревании в присутствии ионов водорода) мальтоза расщепляется на составляющие ее моносахариды – две молекулы глюкозы за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования мальтозы из моносахаридов.

Аналогичная реакция происходит в кишечнике у живых организмов при попадании в него мальтозы. В кишечнике сахароза под действием ферментов быстро гидролизуется на две молекулы глюкозы.

3. реакции крахмала с водой (гидролиз крахмала):

(C6H10O5)n + nН2О → nС6Н12O6 (tо, kat = H2SO4).

Важнейшее свойство крахмала – способность подвергаться гидролизу под действием ферментов или при нагревании с кислотами.

Гидролиз протекает ступенчато. Из крахмала сначала образуется декстрин ((C6H10O5)n), который гидролизуется до мальтозы (C12H22O11). Затем в результате гидролиза мальтозы образуется глюкоза (С6Н12O6).

Аналогичная реакция происходит во рту, желудке и кишечнике у живых организмов при попадании в него крахмала. В желудке и кишечнике крахмал под действием ферментов окончательно гидролизуется на глюкозу.

Данная реакция используется в качестве промышленного способа получения глюкозы.

4. реакции А.М. Бутлерова – альдольной конденсации формальдегида:

CH2O → С6Н12O6 (kat = Ca(OH)2).

Первый синтез углеводов из формальдегида в щелочной среде осуществил А.М. Бутлеров в 1861 году.

Формальдегид под действием гидроксидов щелочноземельных металлов вступает в реакцию самоконденсации, образуя при этом смесь углеводов («формозу»), в т.ч. глюкозу.

5. реакции фотосинтеза:

CO2 + H2O → С6Н12O6 + O2 (hv, kat = хлорофилл).

В природе глюкоза образуется в растениях в результате фотосинтеза из углекислого газа и воды под действием солнечного света в листьях растений. В ходе реакции помимо глюкозы образуется кислород.

6. реакции гидролиза гликогена в кислой среде:

(C6H10O5)n → (C6H10O5)y → C6H12O6 (H2O, Н+).

Важнейшее свойство гликогена – способность подвергаться гидролизу в водных растворах кислот.

Гидролиз протекает ступенчато. Из гликогена ((C6H10O5)n) сначала образуется декстрин ((C6H10O5)y, при этом y < n), который гидролизуется до глюкозы (С6Н12O6).

Лишь бы лаборатория не взорвалась

Довольно-таки быстро выяснилось, что аммиачный раствор оксида серебра хоть не стоек, но при хранении способен образовывать взрывчатые соединения, поэтому по окончании опытов остатки рекомендуется уничтожать. Но есть и положительная сторона: в составе, кроме металла, присутствуют азот и кислород, что при разложении дает возможность выделять нитрат серебра, знакомый нам как ляпис медицинский. Сейчас не такой популярный, но когда-то им прижигали и обеззараживали раны. Где опасность взрыва — там и средства лечения.

И все-таки аммиачный раствор оксида серебра обрел известность благодаря другим, не менее важным явлениям: от взрывотехники и серебрения зеркал до обширных исследований в анатомии и органической химии.

Когда через аммиачный раствор оксида серебра пропускают ацетилен, на выходе образуется очень опасный ацетиленид серебра. Он способен взрываться при нагреве и механическом воздействии, даже от тлеющей лучинки

Проводя опыты, следует проявлять осторожность и выделять ацетиленид в небольших количествах. Как чистить лабораторную посуду, подробно изложено в правилах техники безопасности.
Если в колбу с круглым дном налить азотнокислое серебро, добавить аммиачный раствор и глюкозу и греть на водяной бане, то металлическая часть осядет на стенки и дно, создавая эффект отражения

Процесс назвали «реакция серебряного зеркала». Используется в промышленности для производства елочных шаров, термосов и зеркал. Сладкая глюкоза помогает довести изделие до зеркального блеска. А вот у фруктозы такого свойства нет, хоть она и слаще.

Реактив Толленса используется в патологической анатомии. Существует специальная техника (метод Фонтана-Массон) окрашивания тканей, с помощью которой при вскрытии определяют в тканях меланин, аргентаффинные клетки и липофусцин (пигмент старения, участвующий в межклеточном обмене).
Применяется в органической химии для анализа и выявления альдегидов, восстанавливающих сахаров, гидроксикарбоновых кислот, полигидроксифенолов, первичных кетоспиртов, аминофенолов, α-дикетонов, алкил- и арилгидроксиламинов, алкил- и арилгидразинов. Вот какой важный и нужный реагент. Немало поспособствовал исследованиям органики.

Химические свойства глюкозы

Химические свойства глюкозы, как и других альдоз, обусловлены присутствием в ее молекуле: а)альдегидной группы; б) спиртовых гидроксилов; в) полуацетального (гликозидного) гидроксила.

Специфические свойства

1. Брожение (ферментация) моносахаридов

Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:

1) Спиртовое брожение

2) Молочнокислое брожение

(образуется в организмах высших животных при мышечных сокращениях).

3) Маслянокислое брожение

4) Лимоннокислое брожение

Реакции с участием альдегидной группы глюкозы (свойства глюкозы как альдегида)

1. Восстановление (гидрирование) с образованием многоатомного спирта

В ходе этой реакции карбонильная группа восстанавливается и образуется новая спиртовая группа:

Cорбит содержится во многих ягодах и фруктах, особенно много сорбита в плодах рябины.

2. Окисление

1) Окисление бромной водой   

Качественные реакции на глюкозу как альдегид!

Протекающие в щелочной среде при нагревании реакции с аммиачным раствором Ag2O (реакция серебряного зеркала») и с гидроксидом меди (II) Cu (OH)2 приводят к образованию смеси продуктов окисления глюкозы.

2) Реакция серебряного зеркала

Соль этой кислоты – глюконат кальция – известное лекарственное средство.

Видеоопыт «Качественная реакция глюкозы с аммиачным раствором оксида серебра (I)»    

3) Окисление гидроксидом меди (II)     

В ходе этих реакций альдегидная группа – СНО окисляется до карбоксильной группы – СООН.

Реакции глюкозы с участием гидроксильных групп (свойства глюкозы как многоатомного спирта)

1. Взаимодействие с Cu (ОН)2с образованием глюконата меди (II)

Качественная реакция на глюкозу как многоатомный спирт!

Подобно этиленгликолю и глицерину, глюкоза способна растворять гидроксид меди (II), образуя растворимое комплексное соединение синего цвета:

Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет.

В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение. 

Видеоопыт «Качественная реакция глюкозы с гидроксидом меди (II)»

2. Взаимодействие с галогеналканами с образованием простых эфиров

Являясь многоатомным спиртом, глюкоза образует простые эфиры:

Реакция происходит в присутствии Ag2O для связывания выделяющегося при реакции НI.

3. Взаимодействие с карбоновыми кислотами или их ангидридами с образованием сложных эфиров.

Например, с ангидридом уксусной кислоты:  

Реакции с участием полуацетального гидроксила

1. Взаимодействие со спиртами с образованием гликозидов

Гликозиды – это производные углеводов, у которых гликозидный гидроксил замещен на остаток какого-либо органического соединения.

Содержащийся в циклических формах глюкозы полуацетальный (гликозидный) гидроксил является очень реакционноспособным и легко замещается на остатки различных органических соединений.

В случае глюкозы гликозиды называются глюкозидами. Связь между углеводным остатком и остатком другого компонента называется гликозидной.

Гликозиды построены по типу простых эфиров.

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу:

В данных условиях в реакцию вступает только гликозидный гидроксил, спиртовые гидроксильные группы в реакции не участвуют.

Гликозиды играют чрезвычайно важную роль в растительном и животном мире. Существует огромное число природных гликозидов, в молекулах которых с атомом С (1) глюкозы остатки самых различных соединений.

Реакции окисления

Более сильный окислитель – азотная кислота НNO3 – окисляет глюкозу до двухосновной глюкаровой (сахарной) кислоты:

В ходе этой реакции и альдегидная группа – СНО и первичная спиртовая группа — СН2ОН окисляются до карбоксильных – СООН.

Видеоопыт Окисление глюкозы кислородом воздуха в присутствии метеленового голубого

Рубрики: Углеводы Теги: Углеводы

Искусственно состаренные серебряные отражающие поверхности

Мода на антикварные предметы интерьера никогда не проходит, и не обошла она даже зеркала. Но не всем удается приобрести именно то зеркало, которое несколько десятков лет назад украшало какой-нибудь театр или зажиточный дом. Поэтому некоторые производители прибегают к разнообразным технологиям и средствам, позволяющим визуально состарить отражающие стекла. Это достигается не только внешним изменением зеркальной рамки с помощью потертости или обесцвечивания. Все дело заключается в искусственном воздействии на амальгаму. В искусственно состаренных зеркалах она специально сделана темной, тусклой, с черными патинированными вкраплениями. Такие зеркала часто имеют не только тусклую серебряную амальгаму, но в них также присутствуют разноцветные зеркальные полотна (оттенки их могут быть самыми разными). Благодаря данным процессам изображения в отражении получаются насыщенными и яркими. В некоторых состаренных стеклах изображение порой получается трехмерным, но при этом отражение нисколько не искажается.

https://youtube.com/watch?v=ELWHFG1oMRs

Данный антиквариат становится очень популярным среди любителей старинных вещей. И если физическое воздействие может отрицательно повлиять на качество отражения, то воздействие на химическом уровне никак не повлияет на зеркальные характеристики и их способность выполнять свои прямые функции. Помимо этого, на поверхность искусственно состаренных зеркал наносится слоистая смола. Такой предмет интерьера прослужит вам очень долго. Если вы не хотите смотреться в слишком старое зеркало, то можно заказать такой предмет, на котором лишь в некоторых частях стекла будет исправлена серебряная амальгама, например, в верхней части поверхности или только в уголках. Цветовая гамма состаренного стекла может быть самой разнообразной. Наиболее популярной среди любительниц покрутиться перед зеркалом является зеркальная поверхность с нежно-розовыми пятнами. Иногда используются плавно переходящие друг в друга оранжевые, фиолетовые и золотистые цвета.

Идея использования серебра в зеркалах

Как уже говорилось, идея серебряных зеркал не нова. Поэтому если вы являетесь ценителем старины, то подобные технологии подойдут вам в наилучшей степени. Но даже если вы и являетесь приверженцем модернизма, такие предметы интерьера, созданные по последним тенденциям, тоже отлично впишутся в ваш интерьер. Помимо того что в зеркалах используется огромное количество тех или иных элементов, сами зеркала тоже существенно расширили сферу своего использования. Так, если несколько десятилетий или столетий назад мы могли лицезреть зеркала только в интерьере какого-нибудь богатого дома, то теперь даже в строительстве присутствуют элементы, которые не пропускают сквозь себя солнечные лучи (как раньше), а отражают их.

Все зеркала делятся на 3 группы. Первая – самая распространенная – включает в себя бесцветные отражающие стекла.

Помимо данной группы, существуют еще две, менее распространенные. К ним относятся цветные и матовые зеркальные поверхности.

Что может показать реакция серебряного зеркала

Эта интересная химическая реакция демонстрирует не только определенные состояния вещества — с ее помощью можно выполнить качественное определение альдегидов. То есть подобная реакция решит вопрос: есть ли в растворе альдегидная группа или нет.

Например, в подобном процессе можно узнать, что содержится в растворе: глюкоза или фруктоза. Глюкоза даст положительный результат — получится «серебряное зеркало», а фруктоза содержит кетоновую группу и получить осадок серебра нельзя. Для того чтобы провести анализ, вместо раствора формальдегида необходимо добавлять 10%-ный раствор глюкозы. Рассмотрим, почему и как растворенное серебро превращается в твердый осадок:

2OH + 3H₂O + C₆H₁₂O₆ (глюкоза) = 2Ag↓+ 4NH₃∙H₂O + C₆H₁₂O₇ (образуется глюконовая кислота).

Источник