Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением
В заметке С. Савина «Вариант включения стабилизатора К142ЕН5», опубликованной в «Радио» 1989, № 12, с, 66, речь шла о том, что если вывод 8 этой микросхемы подключить к общему проводу через стабилитрон, то напряжение на выходе стабилизатора увеличится на напряжение стабилизации включенного стабилитрона. Подобный совет повторил А. Гвоздак в статье «Доработка радиоконструктора «Юниор-1», помещенной в «Радио» № 6, с. 81—83 за 1991 г. Опыт показывает, что подборкой соответствующего стабилитрона можно в необходимой мере повысить выходное напряжение стабилизатора, но оно, как и при традиционном включении стабилизатора К142ВН5, фиксированное. Вместе с тем читатели нашего журнала сообщают, что аналогичный способ включения микросхемных стабилизаторов К142ЕН5 позволяет получить на выходе стабилизатора повышенное регулируемое напряжение. Об этом, в частности, рассказывают в своих письмах радиолюбители А. Чумаков из г. Йошкар-Ола и А. Черкасов из Караганды.
Типы стабилизаторов
По способу ограничения силы тока выделяют два типа устройств:
- Линейный;
- Импульсный.
Линейный стабилизатор работает по принципу делителя напряжения. Он выпускает из себя ток заданного параметра, рассеивая избытки в виде тепла. Принцип работы такого прибора можно сравнить с лейкой оснащённой дополнительным сливным отверстием.
Преимущества
- доступная цена;
- простая схема монтажа;
- легко собрать своими руками.
Недостаток — из-за нагрева плохо приспособлен к работе с большой нагрузкой.
Импульсный стабилизатор как овощерезка через специальный каскад нарезает входящий ток, выдавая строго дозированную норму.
Преимущества
- предназначен для высоких нагрузок;
- не греется во время работы.
Недостатки
- требует источника питания для собственной работы;
- создает электромагнитное излучения;
- относительно высокая цена;
- сложен для самостоятельного изготовления.
Учитывая малую силу тока в автомобильных светодиодах можно собрать простой стабилизатор для светодиодов своими руками. Наиболее доступный и простой драйвер светодиодных ламп и лент собирают на микросхеме lm317.
https://youtube.com/watch?v=7YkmFCcqEiU
Блок питания на интегральном стабилизаторе
Интегральные стабилизаторы положительного напряжения
Устройства с интегральной системой работы используют в стабилизаторах напряжения, аудиосистемах, усилителях, блоках питания и других. Все детали конструкции соединены посредством кремниевого кристалла так, чтобы их последовательность составляла стабилизатор. В электротехнике используют два типа:
- с использованием полупроводника;
- с применением пленочных элементов (гибридный).
Стандартная схема включает несколько типичных деталей: опорного источника, усилителя, регулирующего элемента, защитный механизм для отключения и предотвращения замыканий.
Микросхемы интегрального типа являются устройствами с завершенным функциональным циклом. Каждая имеет пути входа, выхода и заземления.
Использовать подобные схемы можно только с определенными показателями напряжения. Допустимые пределы – от 5 до 24В, для тока – меньше 1А.
Интегральные схемы имеют ограничитель напряжения на выходе. Также устанавливается дополнительная защита от перегрева.
Блок питания на интегральном стабилизаторе
Интегральные стабилизаторы положительного напряжения
Устройства с интегральной системой работы используют в стабилизаторах напряжения, аудиосистемах, усилителях, блоках питания и других. Все детали конструкции соединены посредством кремниевого кристалла так, чтобы их последовательность составляла стабилизатор. В электротехнике используют два типа:
- с использованием полупроводника;
- с применением пленочных элементов (гибридный).
Стандартная схема включает несколько типичных деталей: опорного источника, усилителя, регулирующего элемента, защитный механизм для отключения и предотвращения замыканий.
Микросхемы интегрального типа являются устройствами с завершенным функциональным циклом. Каждая имеет пути входа, выхода и заземления.
Использовать подобные схемы можно только с определенными показателями напряжения. Допустимые пределы – от 5 до 24В, для тока – меньше 1А.
Интегральные схемы имеют ограничитель напряжения на выходе. Также устанавливается дополнительная защита от перегрева.
Типовые схемы LM317
Как было указано, в LM317 используется при создании регулируемых и нерегулируемых блоков питания, однако, также может быть использован в качестве основы стабилизатора тока при создании светодиодных драйверов, которые поддерживают ток в цепи вне зависимости от входного напряжения. Только описанных в datasheet применений хватит на отдельную книгу, поэтому разберем несколько самых популярных схем на этом стабилизаторе.
Регулируемый блок питания (1.2-37В)
Все, что понадобится для его создания, это заменить R2 на переменный резистор, а также добавить трансформатор с диодным мостом на вход. При использовании стоит учитывать, что микросхема обладает опорным напряжением в 1.25В, поэтому оно и будет минимальным для данной схемы.
Регулируемый блок питания (0-37В)
Если вам необходима полная регулировка с 0В, то производители схем предлагают подключить к схеме источник отрицательного напряжения на 10В.
Вы можете намотать дополнительную катушку на трансформатор блока питания и подключить его выводы после диодного моста следующим образом:
Таким образом, вы получите простейший лабораторный блок питания.
Светодиодный драйвер (Стабилизатор тока)
С помощью этой схемы вы можете запитывать достаточно мощные светодиоды и светодиодные ленты. Все, что нужно – это знать потребляемый ток и, исходя из него, подобрать сопротивление по формуле.
В нем используется тот же принцип, что и в самой простой схеме, но вместо резистивного делителя установлен датчик тока. Чем больший ток потребляет нагрузка на выходе, тем большее падение напряжения будет наблюдаться на датчике. Оно отслеживается микросхемой, и она увеличивает или уменьшает напряжение для поддержания стабильного тока. Даже при коротком замыкании ток будет держаться на стабильном уровне, который был выставлен.
Зарядное устройство
Схема данного зарядного устройства взята из datasheet и имеет напряжение на выходе 6В с ограничением 0.6А. С помощью изменения сопротивления резисторов R1 и R2 возможно регулировать напряжение под ваши нужды, а при помощи резистора R3 – ток. Оно подойдет для питания аккумуляторов телефонов, инструментов и бытовой техники.
Регулирование переменного напряжение
Так как два LM317 могут регулировать не только положительные, но и отрицательные колебания синусоиды, то с помощью них можно создать AC регулятор. Можно видеть, что схема довольно не сложная и не требует множества компонентов:
Основные характеристики линейного стабилизатора напряжения LM317
В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.
Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.
Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.
Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:
- минимальное выходное напряжение – 1,25 В;
- минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;
Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).
Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.
Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.
Легко о простом. Сила тока, напряжение и их стабилизация
От напряжения зависит, насколько стремительно электроны движутся по проводнику. Многие страстные любители жёсткого компьютерного разгона увеличивают напряжение ядра центрального процессора, благодаря чему тот начинает функционировать быстрее.
Сила тока – это плотность движения электронов внутри электрического проводника. Данный параметр чрезвычайно важен радиоэлементам, работающим по принципу термоэлектронной вторичной эмиссии, в частности, источникам света. Если площадь поперечного сечения проводника не в состоянии пропустить поток электронов, избыток тока начинает выделяться в виде тепла, вызывая значительный перегрев детали.
Плазменная дуга от высокого напряжения
Для лучшего понимания процесса проанализируем плазменную дугу (на её основе работает электроподжег газовых плит и котлов). При очень высоком напряжении скорость свободных электронов до такой степени велика, что они могут легко «пролетать» расстояние между электродами, формируя плазменный мостик.
А это электронагреватель. При прохождении через него электронов они передают свою энергию нагревательному элементу. Чем выше сила тока, тем плотнее поток электронов, тем сильнее нагревается термоэлемент.
Для чего необходима стабилизация тока и напряжения
Любой радиоэлектронный компонент, будь то лампочка или центральный процессор компьютера, требует для оптимальной работы чётко лимитированное количество электронов, которое течёт по проводникам.
Поскольку речь в нашей статье идёт о стабилизаторе для светодиодов, о них и поговорим.
При всех своих преимуществах светодиоды имеют один минус – высокая чувствительность к параметрам питания. Даже умеренное превышение силы и напряжения может привести к выгоранию светоизлучающего материала и выходу из строя диода.
Сейчас очень модно переделывать систему освещения автомобиля под LED освещение. Их цветовая температура намного ближе к естественному освещению, чем у ксенона и ламп накаливания, что значительно меньше утомляет водителя при длительных поездках.
Однако это решение требуется особый технический подход. Номинальный ток питания автомобильного LED-диода – 0,1-0,15 мА, а пусковой аккумулятора – сотни ампер. Этого хватит, чтобы выжечь очень много дорогостоящих элементов освещения. Что бы этого избежать используют стабилизатор 12 вольт для светодиодов в авто.
Ампераж в автомобильной сети постоянно меняется. Например, автомобильный кондиционер «кушает» до 30 ампер, при его отключении электроны, «выделенные» на его работу уже не вернутся назад в генератор и аккумулятор, а перераспределятся между остальными электроприборами. Если лампе накаливания, рассчитанной на 1-3 А дополнительные 300 мА роли не сыграют, то диоду с током питания 150 мА несколько таких скачков могут стать фатальными.
Ради гарантии длительной работы автомобильных светодиодов используют стабилизатор тока на lm317 для мощных светодиодов.
https://youtube.com/watch?v=xKZv5fSjvjc
https://youtube.com/watch?v=k94bBRV3hQY
Схемотехническое решение микросхемы LM317
Интегральная микросхема (ИМС) изготовлена в пластмассовом корпусе, с возможностью установки на теплоотводе (радиаторе). Она имеет три вывода и предоставляет возможность линейной стабилизации напряжения и тока. ИМС предназначена для применения в регулируемых блоках питания (БП) и светодиодных схемах.
К сведению. Популярная модель этого устройства изготовлена в корпусе ТО-220 и имеет букву T в составе маркировки. Эта буква указывает на вид корпуса.
Каждый из трёх выводов LM317 обладает следующим назначением:
- VIn – вход, куда подают напряжение, предназначенное для регулировки;
- VOut– это выход, с которого снимается нужное напряжение, он имеет электрический контакт с кронштейном для крепления к плате или радиатору;
- Adj – регулируемый вход, через который производят изменение выходного напряжения, используя для этого переменный резистор.
Считают выводы слева направо, держа микросхему лицевой стороной к себе.
Распиновка LM317 TO-220(T)
Схемы линейных устройств
Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.
Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.
Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.
Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.
Каждый вывод микросхемы имеет свое предназначение:
- ADJUST. Ввод для регулирования выходного напряжения.
- OUTPUT. Ввод для формирования выходного напряжения.
- INPUT. Ввод для подачи питающего напряжения.
Технические показатели стабилизатора:
- Напряжение на выходе в пределах 1,2–37 В.
- Защита от перегрузки и КЗ.
- Погрешность выходного напряжения 0,1%.
- Схема включения с регулируемым выходным напряжением.
Схема стабилизации напряжения
Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.
Зарядное устройство на LM317 схема |
Зарядное устройство для свинцово-кислотных (автомобильных аккумуляторов) можно довольно быстро собрать на микросхеме LM317T. А самое большое преимущество в том, что не обязательно быть радиолюбителем для её реализации, достаточно примитивных познаний физики и электротехники. Схема зарядного устройства проста в настройке, и требует минимум навесных элементов, а при этом довольно надёжная и дешёвая.
Схема зарядки на LM317 кажется довольно простой. Я хоть и не собирал её и не настраивал (делал только блок питания на LM317T), но постараюсь максимально подробно рассказать всё, что знаю про микросхему:
Зарядное устройство на LM317 схема
Достоинство ЗУ на LM317, в том, что можно подобрать ток заряда для многих различных батарей (правда, его нельзя регулировать). А благодаря её конструкции, микросхему LM317 несложно посадить на радиатор и тем самым производить её охлаждение при большом номинальном токе. Микросхема довольно надёжная, стабильная и относительно недорогая, но всё, же я рекомендую вам LM317 купить сразу пару штучек, потому как они довольно часто выходят из строя в процессе наладки схемы.
Настройка схемы зарядки на LM317:
Предложенный вариант схемы ЗУ, представляет собою обыкновенный стабилизатор тока. Собрать подобного рода схему на LM317 можно поверхностным монтажом, печатная плата не потребуется. В качестве источника питания рекомендую использовать понижающий трансформатор, подходящий по параметрам, или можно попробовать вариант с гасящим конденсатором. Вы должны понимать, что микросхеме нужно обеспечить все рабочие условия, я рекомендую перед настройкой посмотреть datasheet на lm317.
Прежде чем настраивать схему зарядного устройства, необходимо знать ток заряда батареи. Как правило, его рассчитывают по формулам, но на практике я просто знаю, что он должен составлять одну десятую от рабочего тока батарейки (к примеру, если ёмкость батареи 6 А/ч, то ток заряда батареи должен быть не больше 600 mА).
Для зарядного устройства важно обеспечить чёткий, стабилизированный ток заряда, на протяжении всей процедуры зарядки. Для того что бы настроить схему чётко под номинальный ток
Необходимо всё заранее просчитать по закону Ома, и подобрать подходящее сопротивление в качестве нагрузки, заменив им на время настройки саму батарею (не забывайте про мощность резистора, она должна быть соответствующая проходящему через зарядку току).
Схема настройки зарядного устройства
Резистор R1 подбирается в соответствии с VD2. А вот резистором R2, подбирают под потребляемый ток батареи. R2 обладает очень низким сопротивлением, потому в качестве него лучше всего подходит кусочек нихромовой проволоки (если нет подходящего по номиналу резистора, просто купите нихромовую спираль для электропечи и укоротите её до нужного номинала сопротивления, как вариант,). Естественно, что вам нужен амперметр, для подбора уровня тока, необходимого для заряда батареи. Меряете, и подбираете резистор R2. А добившись нужного уровня тока можете смело ставить аккумулятор на зарядку.
По идее, схема зарядного устройства должна работать следующим образом. Когда батарея разряжена, она потребляет максимальный ток заряда, и светодиод VD2 горит ярко. Как только батарея начнёт заряжаться, светодиод будет тускнеть пока не станет гореть очень слабо (а если грамотно подобрать резистор R2, то и вовсе потухнет).
bip-mip.com
Стабилизатор тока для светодиодов — описание
Конечно же, самым простым способ ограничить Iпотр. для LED является . Но следует отметить, что данный способ малоэффективен по причине больших энергетических потерь, и подходит лишь только для слаботочных LED.
Формула расчета необходимого сопротивления: Rд= (Uпит.-Uпад.)/Iпотр.
Пример
: Uпит. = 12В; Uпад. на светодиоде = 1,5В; Iпотр. cветодиода = 0,02А. Необходимо рассчитать добавочное сопротивление Rд.
В нашем случае Rд = (12,5В-1,5В)/0,02А= 550 Ом.
Но опять, же повторюсь, данный способ стабилизации годится только для маломощных светодиодов.
Следующий вариант стабилизатора тока на
более практичен. В ниже приведенной схеме, LM317 ограничивает Iпотр. LED, который задается сопротивлением R.
Для стабильной работы на LM317, входное напряжение должно превышать напряжение питания светодиода на 2-4 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт.
Формула для расчета сопротивления резистора R: R=1,25/Iпотр.
Пример
: для LED с Iпотр. в 200мА, R= 1,25/0, 2А=6,25 Ом.
Работа стабилизаторов тока
Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.
Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.
В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.
Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.
Мощные аналоги LM317T — LM350 и LM338
Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.
Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.
Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.
Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.
Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.
Технические характеристики:
Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.
Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.
Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1
https://youtube.com/watch?v=D8B5zucjF94
Назначение и принцип работы
Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.
Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.
- Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
- Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
- Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.
В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.
Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.
Основные характеристики
Подключение схемы к батарее на 9V типа Крона
Стабилизатор напряжения на lm317 работает в определенном диапазоне подачи электроэнергии. Пределы – минимум 1,25В, максимум 37В. На выходе мощность напряжения не превышает 1,5 Ампер, погрешность при нестабильном подключении составляет до 0,1%.
Регулятор напряжения на микросхеме lm317 имеет системы дополнительной внутренней защиты: от коротких сетевых замыканий, от теплового перенапряжения, от чрезмерного рассеивания «лишнего» напряжения.
Тепловое ограничение обеспечивают специальные микродатчики, которые гарантируют защиту техники от превышения рассеиваемой мощности – если подобное произойдет, устройство просто отключится и не пострадает.