Схема включения lm358 (n)

Особенности операционного усилителя

Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:

  1. Крайне низкая цена элемента.
  2. При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
  3. Может питаться как от однополярного источника, так и от двухполярного.
  4. Питание может происходить от источника, напряжение которого 3…32В. Это позволяет использовать практически любой блок питания.
  5. На выходе сигнал нарастает со скоростью 0,6 В/мкс.
  6. Максимальный потребляемый ток не превышает 0,7 мА.
  7. Напряжение смещения на входе не более 0,2 мВ.

Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Термодатчик своими руками

Простая схема термодатчика

Эта простая схема термореле, выполненная всего на двух транзисторах, может быть использована как сигнализатор повышения температуры или как регулятор температуры ( например, включать вентилятор для охлаждения какого-либо контролируемого объекта).

Рис.1 Схема электронного термореле

Работа схемы заключается в следующем. При нормальной температуре, транзистор T1 закрыт, транзистор T2 также закрыт, соответственно, реле Re обесточено. При повышении температуры сопротивление терморезистора Th падает, при определенном его значении, напряжение на базе транзистора T1 достигает значения, при котором он открывается, также открывается транзистор T2, реле Re срабатывает, включая нагрузку.

Настройка. Вы должны настроить резистор P1 так, чтобы напряжение на базе транзистора T1 было на 0.5V меньше, чем напряжение на эмиттере, при температуре немного ниже требуемой температуры срабатывания.

https://www.youtube.com/watch?v=xbRxivbGuho

Если вы хотите использовать термореле в качестве сигнализатора понижения температуры или как термореле для нагревателя(контактная группа электромагнитного реле должна соответствовать токовой нагрузки нагревателя), Th1 и P1 меняются местами.

В схеме используется термистор с отрицательным ТКС (температурный коэффициент сопротивления). Сопротивление подстроечного резистора P1 должно быть близким по значению к номинальному сопротивлению термистора Th. Сопротивление обмотки реле Re должно быть около 200 Ом, если использовать в качестве T2- bc574 (КТ3102- его отечественный аналог, для bc557 аналог- КТ3107).

https://youtube.com/watch?v=Ce7cPoSqa4c

https://youtube.com/watch?v=pomOLmnyKgw

https://youtube.com/watch?v=SwW7vwQenG0

Описание операционного усилителя LM358

Область применения — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Технические характеристики LM358

  • Однополярное питание: от 3 В до 32 В.
  • Двухполярное питание: ± 1,5 до ± 16 В.
  • Ток потребления: 0,7 мА.
  • Входное напряжение смещения: 3 мВ.
  • Дифференциальное входное напряжение: 32 В.
  • Синфазный входной ток: 20 нА.
  • Дифференциальный входной ток: 2 нА.
  • Дифференциальный коэффициент усиления по напряжению: 100 дБ.
  • Размах выходного напряжения: от 0 В до VCC — 1,5 В.
  • Коэффициент гармонических искажений: 0,02%.
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс.
  • Частота единичного усиления (с температурной компенсацией): 1,0 МГц.
  • Максимальная рассеиваемая мощность: 830 мВт.
  • Диапазон рабочих температур: 0…70 гр.С.

Особенности операционного усилителя

Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:

  1. Крайне низкая цена элемента.
  2. При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
  3. Может питаться как от однополярного источника, так и от двухполярного.
  4. Питание может происходить от источника, напряжение которого 3…32В. Это позволяет использовать практически любой блок питания.
  5. На выходе сигнал нарастает со скоростью 0,6 В/мкс.
  6. Максимальный потребляемый ток не превышает 0,7 мА.
  7. Напряжение смещения на входе не более 0,2 мВ.

Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители

5.6 Электрические характеристики для LM2904

В указанном диапазоне температур, VCC = 5 В (если не указано иное)

Параметр Условия(1) TA(2) LM2904 Ед. изм.
MIN TYP(3) MAX
VIO Входное напряжение компенсации смещения нуля VCC = от 5 В до MAX,
VIC = VICR(min),
VO = 1.4 В
Без A суффикса в маркировке 25°C 3 7 мВ
Весь диапазон 10
С А суффиксом в маркировке 25°C 1 2
Весь диапазон 4
αVIO Средний температурный коэффициент входного напряжения смещения нуля Весь диапазон 7 мкВ/°C
IIO Входной ток компенсации смещения нуля VO = 1.4 В Без V суффикса в маркировке 25°C 2 50 нА
Весь диапазон 300
С V суффиксом в маркировке 25°C 2 50
Весь диапазон 150
αIIO Средний температурный коэффициент входного тока смещения нуля Весь диапазон 10 пA/°C
IIB Входной ток смещения VO = 1.4 В 25°C -20 -250 нA
Весь диапазон -500
VICR Диапазон входного синфазного напряжения VCC = от 5 В до MAX 25°C от 0 до
VCC — 1.5
В
Весь диапазон от 0 до
VCC — 2
VOH Высокий уровень выходного напряжения RL ≥ 10 кОм 25°C VCC — 1.5 В
VCC = MAX,
Без V суффикса
RL = 2 кОм Весь диапазон 22
RL ≥ 10 кОм Весь диапазон 23 24
VCC = MAX
С V суффиксом
RL = 2 кОм Весь диапазон 26
RL ≥ 10 кОм Весь диапазон 27 28
VOL Низкий уровень выходного напряжения RL ≤ 10 кОм Весь диапазон 5 20 мВ
AVD Большой сигнал усиления дифференциального напряжения VCC = 15 В,
VO = от 1 В до 11 В,
RL ≥ 2 кОм
25°C 25 100 В/мВ
Весь диапазон 15
CMRR Коэффициент ослабления синфазного сигнала VCC = от 5 В до MAX,
VIC = VICR(min)
Без V суффикса 25°C 50 80 dB
С V суффиксом 25°C 65 80
kSVR Коэффициент подавления помех по питанию
(ΔVCC /ΔVIO)
VCC = от 5 В до MAX 25°C 65 100 dB
VO1/ VO2 Переходное затухание f = от 1 кГц до 20 кГц 25°C 120 dB
IO Выходной ток VCC = 15 В,
VID = 1 В,
VO = 0
Источник 25°C -20 -30 мA
Весь диапазон -10
VCC = 15 В,
VID = -1 В,
VO = 15 В
Приемник 25°C 10 20
Весь диапазон 5
VID = -1 В, VO = 200 мВ Без V суффикса 25°C 30 мкA
С V суффиксом 25°C 12 40
IOS Ток короткого замыкания на выходе VCC около 5 В, VO = 0, GND около ?5 V 25°C ±40 ±60 мA
ICC Потребляемый ток
(четыре усилителя)
VO = 2.5 В, Без нагрузки Весь диапазон 0.7 1.2 мA
VCC = MAX, VO = 0.5 VCC, Без нагрузки Весь диапазон 1 2

(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.

(2) Весь диапазон это температуры от -55°C до 125°C для LM158, от -25°C до 85°C для LM258, и от 0°C до 70°C для LM358, и от -40°C до 125°C для LM2904.

(3) Все типичные значения для температуры TA = 25°C

Регулирующий термостатический клапан

Это регулирующее устройство, именуемое термостатическим вентилем (клапаном) — наиболее простой вариант решения задачи по получению теплоносителя определенной температуры. Результат достигается при смешивании холодной и теплой воды. Контроль температуры теплоносителя осуществляется не при помощи управления отопительным котлом, а изменением интенсивности потока теплоносителя через радиатор.

Конструктивное исполнение прибора довольно простое и включает в себя два основных элемента:

  • Собственно клапан (вентиль), являющийся, по сути, обыкновенной запорной арматурой, перекрывающей отверстие на входе в радиатор отопления. Перекрытие происходит полностью или частично, что, в сущности, и определяет количество пропускаемого теплоносителя.
  • Термостатический элемент с термобаллоном, заполненным специальной жидкостью (газом), расширяющейся при изменениях температуры теплоносителя.

https://www.youtube.com/watch?v=LVG3ykkqi-g

https://youtube.com/watch?v=qLy4FOdl9sY

https://youtube.com/watch?v=5kZE_2J7BT4

https://youtube.com/watch?v=qV11L1JJNgs

Принцип действия

Вне зависимости от вида конструктивное исполнение терморегуляторов соответствует одной общей схеме. Устройство состоит из 3 ключевых модулей (блоков):

  • датчика температуры для котла отопления с термочувствительным элементом;
  • блока настроек;
  • блока управления.

Термодатчик с термочувствительным элементом осуществляет контроль степени нагрева окружающей его среды. Изменения температуры окружающей среды вызывают изменения физических параметров элемента, улавливаемые блоком управления. Блок управления, в свою очередь, передает сигнал одному из исполнительных устройств:

  • механическому клапану;
  • электромагнитному реле;
  • цифровому (аналоговому) прибору, выполняющему последующую обработку сигнала.

Монтаж регулятора температуры для котла отопления осуществляется с обязательным соблюдением некоторых обязательных условий:

  • Прибор должен быть защищен от попадания ультрафиолетового излучения.
  • Внешний датчик устанавливается в местах, характеризующихся стабильностью температуры окружающего воздуха (отсутствие соседства с отопительными устройствами, сквозняков и т. д. ).
  • Датчик монтируется на высоте, рекомендованной производителем.
  • Недопустимо закрывать устройство ширмами, шторами, мебелью и т. д.

https://www.youtube.com/watch?v=K_O1ci1GYyo

Полезные советы

Для обеспечения качественной и бесперебойной эксплуатации термостата для котла, да и всей системы отопления в целом необходимо учесть некоторые нюансы. В связи с этим несколько полезных советов:

  • Приобретение регулировочного оборудования предваряется расчетом, рассматривающего такие параметры, как необходимая температура и площадь отапливаемого помещения. Такой расчет позволит избежать низкой эффективности работы системы и проблем с электропроводкой, неизбежных при подключении сверхмощного оборудования.
  • Несмотря на довольно хорошую совместимость терморегуляторов с большинством моделей отопительных котлов, использование оборудования одного производителя обеспечит не только легкость монтажа, но и простоту эксплуатации.
  • При сомнениях в необходимости покупки дорогостоящего оборудования, приобретите более дешевый (механический) вариант и протестируйте его возможности. Возможно, его функциональности окажется вполне достаточно.
  • Перед монтажом терморегулятора выполните теплоизоляционные мероприятия в обогреваемом помещении, поскольку большие теплопотери сведут на нет эффективность работы прибора.

https://www.youtube.com/watch?v=k0RB4PBzM4k

Схема неинвертирующего усилителя

Описание схемы:

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Общая информация

Компаратор сравнивает два напряжения, откуда происходит название. При необходимости формируется либо условный сигнал в виде двоичного кода, либо знак разницы выдаётся иным способом:

  1. Крутой перепад напряжения (фронт или спад).
  2. Импульс с заданными характеристиками.
  3. Сменой полярности выходного напряжения.
  4. Двоичным кодом в системе логики данного набора микросхем.

Компаратор территориально входит в аналого-цифровой преобразователь, способен применяться и отдельно. От элемента напрямую зависит точность, как и от разрядности. К характеристикам компаратора относят:

  • Чувствительность.
  • Быстродействие.
  • Стоимость.
  • Долговечность.
  • Стабильность.
  • Нагрузочная способность.
  • Входное сопротивление и пр.

Большинство компараторов реализуется на базе операционных усилителей, данные в справочниках приводятся совместные. Это достигается за счёт введения обратной связи, что придумано в 30-е годы XX века.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Простой термостат на компараторе

Идея подобного устройства возникла в процессе апгрейда усилителя на 4-х TDA2030A. Очень уж мне не нравился шум вентилятора. За музыкой его слышно конечно же не было но, когда музыка выключалась, было слышно довольно громкое жужжание вентилятора, обдувающего радиатор. В результате родилась такая вот схема на компараторе LM311.

Для начала вспомним, что есть компаратор. Компаратор (от англ. compare — сравнивать) — это сравнивающее устройство.

Он сравнивает напряжение на прямом входе (у компаратора их два — прямой и инверсный), с напряжением на инверсном входе (напряжение срабатывания). Резисторы R1 и R2 образуют делитель напряжения. С их помощью осуществляется настройка порогового напряжения срабатывания компаратора. Если на прямом входе напряжение превысит напряжение инверсного входа, то компаратор выдаст на выходе высокий уровень, равный напряжению питания компаратора.

Резистор R3 служит для создания положительной обратной связи для формирования гистерезисной передаточной характеристики. Эта мера позволяет избежать быстрых нежелательных переключений состояния выхода, обусловленном шумами во входном сигнале.

На компараторе можно даже построить простейший АЦП, если выставить порог срабатывания и напряжение питания компаратора равными логической единице!

Итак, термостат.

Принцип его действия таков: радиатор не охлаждается, пока его температура не достигнет 40-50 градусов (зависит от сопротивления резисторов RV1 и RT1). По достижении необходимой температуры кулер включается, охлаждает радиатор и снова отключается. Такая схема позволит снизить шум вентилятора на тех режимах работы усилителя, когда нагрев микросхем УМЗЧ незначителен и таким образом уменьшить уровень шума.

Здесь компаратор управляет полевым транзистором, который может коммутировать нагрузку (кулер, светодиод, реле и пр.). Видно что напряжение на прямом входе (12,7В) меньше чем на инверсном (12,8В). На выходе компаратора 0В , следовательно полевик закрыт, ток через него не течет и двигатель не вращается.

Немного изменим сопротивление RV1.

Напряжение на входе превысило пороговое, компаратор открыл транзистор, через него пошел ток, двигатель начал вращаться. В реальных условиях должно изменится сопротивление RT1 из-за нагревания (если это NCT) или охлаждения ( если PCT).

Теперь посмотрим как это будет выглядеть «в железе».

Данные о температуре снимаются с помощью NTC термистора на 1 кОм.

Мой выбор пал на SMD-монтаж, т.к. передо мной стояла задача сделать устройство, имеющее как можно меньшие габариты. Такую платку можно просто прилепить на термоклей или 2-сторонний скотч к радиатору или стенке корпуса усилителя.

Настройка осуществляется довольно просто: необходимо чтобы терморезистор приобрел комнатную температуру. После этого его калибруют вращением подстроечного резистора до прекращения срабатывания на комнатную температуру. Затем нагревают термистор до необходимой расчетной температуры (я калибровал примерно на 50*С. Прилепил термистор к настольной лампе со 100Вт лампой накаливания и настраивал по теплу, отдаваемому лампой.) и подстраивают резистор до появления срабатывания на необходимую температуру.

Ну и не стоит забывать о теплопроводящей пасте между термистором и радиатором.

https://www.youtube.com/watch?v=fD25QFVL-64

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Компаратор LM311 1 Поиск в Aliexpress В блокнот
VT1 MOSFET-транзистор IRLML2502 1 Поиск в Aliexpress В блокнот
R1, R3 Резистор 1 кОм 2 Поиск в Aliexpress В блокнот
R2 Подстроечный резистор 1кОм 1 Поиск в Aliexpress В блокнот
R5 Резистор 100 кОм 1 Поиск в Aliexpress В блокнот
R4 Термистор 1кОм 1 NTC Поиск в Aliexpress В блокнот
Добавить все

Чего хорошего в этом усилителе

Существуют микросхемы аудио усилителей, работающие не хуже, чем этот проект. Однако в предлагаемой схеме использованы детали, которые всегда есть под рукой у большинства радиолюбителей. Усилитель работает в широком диапазоне напряжений питания, а его ток покоя легко изменить в соответствии с требованиями конкретного приложения.

Питание напряжением 9 В делает эту схему прекрасным усилителем для небольших проектов. При замене транзисторов на 2N4401 и 2N4403 получается усилитель, похожий на популярный LM386, однако с регулируемым током покоя и несоизмеримо меньшими искажениями на полной мощности.

Подключив электрогитару, я получил отличный репетиционный усилитель! При питании 18 В и с хорошими динамиками он звучит удивительно громко и чисто. Гитаре его усиления более чем достаточно. Для регулировки громкости параллельно входу я добавил резистор, подключив его движок через конденсатор 1 мкФ. Сопротивление этого потенциометра изменяет входной импеданс усилителя. Хорошо подойдет потенциометр 10 кОм с обратной логарифмической зависимостью характеристики.

Сердцевиной проекта является выходной каскад, а предварительный усилитель может быть и другим. Только не забывайте, что для получения максимальной мощности размах напряжения должен быть близок к шинам питания, так как выходной каскад не имеет усиления по напряжению.

Лабораторный блок питания на LM358N — Блоки питания (лабораторные) — Источники питания

Основные технические характеристикиВходное напряжение, В ……26…29Выходное напряжение, В……1…20Ток срабатывания защиты, А………………….0.03…2

      Схема устройствапоказана на рисунке. Регулируемый стабилизатор напряжения собран на ОУ DA1.1. На его неинвертирующий вход (вывод 3) с движка переменного резистора R2 поступает образцовое напряжение, стабильность которого обеспечивает стабилитрон VD1, а на инвертирующий вход (вывод 2) — напряжение отрицательной обратной связи (ООС) с эмиттера транзистора VT2 через делитель напряжения R11R7 ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Перемещая движок переменного резистора R2, можно регулировать выходное напряжение.

      Узел защиты от перегрузки по току собран на ОУ DA1.2, который включен как компаратор, сравнивающий напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13, на инвертирующий — образцовое напряжение, стабильность которого обеспечивает диод VD2, выполняющий функцию стабистора с напряжением стабилизации около 0,6 В. Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.

      Если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 увеличится почти до напряжения питания. Через резистор R9 потечет ток, который включит светодиод HL1 и откроет транзистор VT1. Диод VD3 открывается и через резистор R8 замыкает цепь положительной обратной связи (ПОС). Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в результате чего выходное напряжение уменьшится практически до нуля, поскольку регулирующий транзистор VT2 закроется и отключит нагрузку. Несмотря на то что напряжение на датчике тока нагрузки упадет до нуля, благодаря действию ПОС нагрузка останется отключенной, что показывает светящийся индикатор HL1. Повторно включить нагрузку можно кратковременным отключением питания или нажатием на кнопку SB1. Диод VD4 защищает эмиттерный переход транзистора VT2 от обратного напряжения с конденсатора С5 при отключении нагрузки, а также обеспечивает разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.

      Детали. Транзистор КТ315А (VT1) можно заменить на КТ315Б—КТ315Е. Транзистор VT2 — любой из серий КТ827, КТ829. Стабилитрон (VD1) может быть любым с напряжением стабилизации У 3 В при токе 3…8 мА. Диоды КД521В (VD2—VD4) могут быть другими из этой серии или КД522Б Конденсаторы СЗ, С4 — любые пленочные или керамические. Оксидные конденсаторы: С1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше указанного на схеме. Постоянные резисторы — МЛТ, переменные — СПЗ-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом. Кнопка (SB1) — П2К без фиксации или аналогичная.

      Налаживание устройства начинают с измерения напряжения питания на выводах конденсатора С1, которое, с учетом пульсаций, должно находиться в пределах, указанных на схеме. После этого перемещают движок переменного резистора R2 в верхнее по схеме положение и, измеряя максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. Затем подключают к выходу эквивалент нагрузки, например, такой, как описан в статье И. Нечаева «Универсальный эквивалент нагрузки» в «Радио», 2005, № 1, с. 35. Измеряют минимальный и максимальный ток срабатывания защиты. Чтобы снизить минимальный уровень срабатывания защиты, необходимо уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия

Лабораторный блок питания на lm358n CAVR.ru

Основные технические характеристикиВходное напряжение, В ……26…29Выходное напряжение, В……1…20Ток срабатывания защиты, А………………….0.03…2

      Схема устройствапоказана на рисунке. Регулируемый стабилизатор напряжения собран на ОУ DA1.1. На его неинвертирующий вход (вывод 3) с движка переменного резистора R2 поступает образцовое напряжение, стабильность которого обеспечивает стабилитрон VD1, а на инвертирующий вход (вывод 2) — напряжение отрицательной обратной связи (ООС) с эмиттера транзистора VT2 через делитель напряжения R11R7 ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Перемещая движок переменного резистора R2, можно регулировать выходное напряжение.

      Узел защиты от перегрузки по току собран на ОУ DA1.2, который включен как компаратор, сравнивающий напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13, на инвертирующий — образцовое напряжение, стабильность которого обеспечивает диод VD2, выполняющий функцию стабистора с напряжением стабилизации около 0,6 В. Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.

      Если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 увеличится почти до напряжения питания. Через резистор R9 потечет ток, который включит светодиод HL1 и откроет транзистор VT1. Диод VD3 открывается и через резистор R8 замыкает цепь положительной обратной связи (ПОС). Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в результате чего выходное напряжение уменьшится практически до нуля, поскольку регулирующий транзистор VT2 закроется и отключит нагрузку. Несмотря на то что напряжение на датчике тока нагрузки упадет до нуля, благодаря действию ПОС нагрузка останется отключенной, что показывает светящийся индикатор HL1. Повторно включить нагрузку можно кратковременным отключением питания или нажатием на кнопку SB1. Диод VD4 защищает эмиттерный переход транзистора VT2 от обратного напряжения с конденсатора С5 при отключении нагрузки, а также обеспечивает разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.

      Детали. Транзистор КТ315А (VT1) можно заменить на КТ315Б—КТ315Е. Транзистор VT2 — любой из серий КТ827, КТ829. Стабилитрон (VD1) может быть любым с напряжением стабилизации У 3 В при токе 3…8 мА. Диоды КД521В (VD2—VD4) могут быть другими из этой серии или КД522Б Конденсаторы СЗ, С4 — любые пленочные или керамические. Оксидные конденсаторы: С1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше указанного на схеме. Постоянные резисторы — МЛТ, переменные — СПЗ-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом. Кнопка (SB1) — П2К без фиксации или аналогичная.

      Налаживание устройства начинают с измерения напряжения питания на выводах конденсатора С1, которое, с учетом пульсаций, должно находиться в пределах, указанных на схеме. После этого перемещают движок переменного резистора R2 в верхнее по схеме положение и, измеряя максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. Затем подключают к выходу эквивалент нагрузки, например, такой, как описан в статье И. Нечаева «Универсальный эквивалент нагрузки» в «Радио», 2005, № 1, с. 35. Измеряют минимальный и максимальный ток срабатывания защиты. Чтобы снизить минимальный уровень срабатывания защиты, необходимо уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия

Классификация терморегуляторов

Регуляторы температуры для котлов отопления обеспечивают заданный температурный режим помещения с достаточно большой точностью. Отклонения, как правило, не превышают 0,50 C — 1,00 C. Их работа осуществляется посредством разнообразных исполнительных устройств, от чего собственно и зависит принадлежность терморегулятора к тому или иному типу. По количеству и содержанию выполняемых функций приборы классифицируют следующим образом:

  • Однофункциональные (поддерживающие исключительно заданную температуру).
  • Многофункциональные, или программируемые.

По типу исполнения терморегуляторы подразделяют на устройства, подключаемые к отопительному котлу посредством проводов и беспроводные. Монтаж регулирующего прибора осуществляется в доступном месте, обеспечивающем достаточный приток воздуха. Кроме того, желательно исключить размещение по соседству с регулятором бытовых электрических приборов (телевизоры, отопительные и осветительные приборы и т. п. ), поскольку это может существенно повлиять на корректность его работы.

https://www.youtube.com/watch?v=EninXuOc0II

Программируемый комнатный контроллер

Программируемый термостат для котла отопления обеспечивает возможность выбора необходимой (комфортной) температуры в нужный отрезок времени, он легко перенастраивается в другой режим работы. Оснащение устройства таймером позволяет устанавливать различные шаблоны функционирования системы отопления для выходных и будних дней. Существуют таймеры, способные поддерживать определенные параметры в зависимости от дня недели. Наличие у регулятора температуры таких функций позволяет настроить систему отопления помещения в соответствии со сложившимся образом жизни и гарантированно поддерживать температурный микроклимат даже в период отсутствия хозяев.

Этот контроллер обладает некоторыми опциями, существенно расширяющими возможности отопительной системы в целом:

  • «Партия», функция, обеспечивающая периодическое отключение (на несколько часов) и последующее возобновление работы системы.
  • «Праздник». Цель данной опции — увеличение или уменьшение интенсивности обогрева помещения в течение заданного количества дней.
  • «Перекрыть». Миссия, позволяющая временно изменить настройки программы в одном из периодов.

Центральное приспособление

Как правило, прибор такого типа используют для эффективного управления отопительной системой всего дома и размещают его на некотором удалении от отопительного котла. Такие устройства оснащены дилатометрическим терморегулятором, работающим дистанционно. Принцип его работы заключается в измерении температуры окружающего воздуха и в зависимости от ее колебаний включении (отключении) отопительного котла.

Регулировка коэффициента усиления

В прошлой конструкции имеется один недостаток – нет возможности произвести регулировку коэффициента усиления. Причина – сложность реализации, ведь нужно использовать сразу два переменных резистора. Но если вдруг возникла необходимость проводить регулировку коэффициента, можно использовать схему конструкции на трех операционниках:

Здесь корректировка происходит при помощи переменного резистора R2. Обязательно нужно учесть, чтобы были выполнены такие равенства:

  1. R3=R1.
  2. R4=R5=R6=R7.

В этом случае k=(1+2*R1/R2).

Напряжение на выходе усилителя U(out)=(1+2*R1/R2)*(Uin1-Uin2).

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

С какими проблемами я столкнулся

В этой схеме много усиления собрано в небольшом объеме и, что еще хуже, есть много тока, идущего через выходной каскад. Операционные усилители довольно хорошо подавляют обратную связь, создаваемую помехами по шинам питания и земли, но, тем не менее, эта обратная связь может создавать проблемы устойчивости. Провода от источника питания подключайте к схеме вблизи выходных транзисторов. Провод «земли» припаяйте возле точки соединения трех конденсаторов 10 мкФ и резистора 330 кОм

Обратите также внимание на входной фильтр 1 кОм/10 мкФ. Мощности, потребляемой усилителем, достаточно для небольшого проседания Vcc, и небольшая часть возникающей в связи с этим помехи, проникая на вход, приводит к генерации или, в моем случае, к загадочному падению входного импеданса

Небольшой RC фильтр эту обратную связь устраняет. Снизить усиление схемы вы можете, уменьшив сопротивления резисторов 33 кОм, или ограничившись только одним входным каскадом. Дополнительное усиление можно будет получить с помощью внешней схемы.

Помимо этого, вы можете столкнуться с проблемами устойчивости, связанными с выбором ОУ и транзисторов, о которых говорилось выше, поэтому было бы неплохо воспользоваться осциллографом и убедиться, что усилитель работает правильно.

Стабилизированный источник питания не является абсолютно необходимым для этой схемы, но, как минимум, нужно использовать конденсатор очень большой емкости, такой, как показанный на схеме конденсатор 2200 мкФ. Трехвыводной стабилизатор обеспечит некоторую дополнительную степень защиты транзисторов в случае короткого замыкания выхода на землю.

Список ранее опубликованных глав

  1. Поваренная книга разработчика аналоговых схем: Операционные усилители
  2. Инвертирующий усилитель
  3. Неинвертирующий усилитель
  4. Инвертирующий сумматор
  5. Дифференциальный усилитель
  6. Интегратор
  7. Дифференциатор
  8. Трансимпедансный усилитель
  9. Однополярная схема измерения тока
  10. Биполярная схема измерения тока
  11. Однополярная схема измерения тока с широким рабочим диапазоном (3 декады)
  12. ШИМ-генератор на ОУ
  13. Инвертирующий усилитель переменного напряжения (активный фильтр высоких частот)
  14. Неинвертирующий усилитель переменного напряжения (активный фильтр высоких частот)
  15. Активный полосовой фильтр
  16. Однополупериодный инвертирующий выпрямитель
  17. Выпрямитель на ОУ
  18. Низковольтный выпрямитель с однополярным питанием
  19. Ограничитель скорости изменения напряжения
  20. Схема формирования дифференциального сигнала
  21. Схема инвертирующего усилителя со смещением инвертирующего входа
  22. Схема неинвертирующего усилителя со смещением инвертирующего входа
  23. Схема неинвертирующего усилителя со смещением неинвертирующего входа
  24. Схема инвертирующего усилителя со смещением неинвертирующего входа

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

•••

Давайте вместе разберемся в её работе.

Наиболее понятно, работа данной схемы представляется в виде работе некоторого постоянно сравнивающего устройства, которое постоянно сравнивает сигнал 1 и сигнал 2 подаваемые на вход компаратора. Выход оно устанавливает исходя из следующего:

Сигнал 1 больше по напряжению, чем сигнал 2?

Если да, то выход устанавливается в 10В (напряжение питание операционного усилителя). Если нет, то в 0В.

Рис.2. Наглядное описание работы компаратора

На первый взгляд в работе данной схемы нет ничего необычного, но существует бесчисленное множество применений работы данной схемы. В основном это устройства, которые переводят аналоговый сигнал в некоторую логическую величину: ДА или НЕТ. Это может быть и индикатор зарядки батареи, и датчик критического уровня жидкости в сосуде или любой другой аналоговый сигнал, который переходи какое-то определённое значение.