Активные и пассивные электрические фильтры

Генераторы гармонических колебаний

В системах управления используются генераторы сигналов различного вида. Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение.

Структурная схема такого генератора показана на рисунке:

Входной сигнал отсутствует. Uвых = К · Uос.

Для возникновения синусоидальных колебаний должно выполняться условие самовозбуждения только для одной частоты: К · γ = 1 – баланс амплитуд, φ + ψ = 2πn – баланс фаз, где К – коэффициент усиления усилителя, γ – коэффициент передачи звена положительной обратной связи, φ – сдвиг по фазе для усилителя, ψ – сдвиг по фазе для цепи обратной связи, n = 0, 1, …

Основной генераторов синусоидальных сигналов являются фильтры, например мост Вина. Генератор на основе ОУ, содержащий мост Вина, представлен на рисунке:

Генератор вырабатывает синусоидальный сигнал частотой .

На частоте f коэффициент передачи фильтра β = 1/3. Усилитель должен иметь коэффициент усиления К ≥ 3, который задаётся резисторами R1 и R2

Важной проблемой является стабилизация амплитуды Uвых, которая обеспечивается в ведением резистора R3 и стабилитронов VD1 и VD2. При малых Uвых напряжение на VD1 и VD2 меньше напряжения стабилизации и R3 не зашунтировано стабилитронами

При этом К > 3 и Uвых возрастает. При достижении напряжения на стабилитронах, равного напряжения стабилизации, тот или иной стабилитрон открывается и пара стабилитронов шунтирует сопротивление R3. Коэффициент усиления становится равным и напряжение Uвых начинает уменьшатся, коэффициент усиления снова становится больше 3 и Uвых снова будет уменьшатся, но уже и в противоположном направлении. Таким образом стабилитроны предотвращают насыщение.

При использовании данного генератора нагрузку желательно подключать через буферный каскад.

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

↑ Печатная плата


В качестве ОУ я применил счетверенный ОУ типа К1401УД2. Эта плата под него. Для стереосистемы из двух двухполосных АС достаточно собрать 1 плату.

#09/02/2021

Печатка От Игоря (Datagor) под LM324, LM2902, LM224, LM124:


Причесал ПП, изменил питание под импортные ОУ (!), подписал компоненты согласно схеме, подписал входы и выходы и т.п. GND — общий питания, земля; +V, −V — питание ±12V … 15V; IN1, IN2 — аудиовходы (ЛК, ПК) от источника (зв.карта, ЦАП, пред, телефон); HF1, HF2 — выходы ВЧ-полос, на усилители; LF1, LF2 — выходы НЧ-полос, на усилители; Конденсаторы по питанию, которых нет на схеме: С50, С53 — 100μF … 470μF 16V (электролит); С51, С52 — 0.1μF … 0.68μF (плёнка или керамика); ОУ — LM324, LM2902, LM224, LM124 и др, счетверённые (dip-14 quadruple opamp).

Обратите внимание:

у импортных ОУ и у К1401УД2 питание инверсное! Шутка отечественных разработчиков. Выбирайте ПП соответственно вашему ОУ.

Забирайте ПП в файлах.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Антониу и его имитация катушки индуктивности

Одним из способов избежать проблем, связанных с катушками индуктивности, является использование схемы, которая ведет себя как катушка индуктивности, но требует только резисторов, конденсаторов и операционных усилителей. Андреас Антониу изобрел следующую «схему имитации индуктивности»:

Рисунок 2 – Схема имитации катушки индуктивности Андреаса Антониу

\

То, как профессор Антониу придумал это, мне понять не под силу. В любом случае я не буду останавливаться на этой схеме, поскольку топологии Саллена-Ки и множественной обратной связи (MFB, Multiple Feedback) представляют собой более простой и более прямой путь к реализации фильтра второго порядка. Однако следует помнить, что различные RLC фильтры могут быть реализованы без катушек индуктивности с помощью схемы имитации индуктивности.

Определение

Фильтры можно поделить на верхние (высокие) и нижние (низкие) частоты. Почему люди часто говорят “верхние”, а не “высокие” частоты? Происходит это из-за того, что с двух килогерц начинаются высокие в звукотехнике. Но два килогерца в радиотехнике — это частота звука, и поэтому ее называют “низкой”.

Также существует такое понятие, как средняя частота. Относится оно к звукотехнике. Так что же такое фильтр средней частоты? Это комбинация из нескольких вышеперечисленных устройств. Также это может быть полосовой фильтр.

Фильтр высокой частоты – это электронный или какой-нибудь прочий аппарат, который пропускает верхние частоты сигнала, и который на входе подавляет частоту сигнала в соответствии с ранее заданным срезом. Степень подавленности будет также зависеть от определенного типа фильтра.

Низкочастотный отличается тем, что он может пропускать входящий сигнал, который будет ниже заданного среза, при этом подавляя верхние частоты.

https://youtube.com/watch?v=DTN_g-sjQrI

Разделительный фильтр для двухполосной акустической системы

Всем привет, продолжаю серию обзоров про самодельную акустику. Про динамики начало тут. Сегодня о том, как не надо делать разделительный фильтр. Что такое разделительный фильтр (для любителей англицизмов «кроссовер»)? Это устройство, пропускающее определенные частотные составляющие в сигнале и ослабляющее остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры). Если в акустической системе больше одного динамика, то что бы динамики играли согласовано по своим частотным диапазонам, необходим фильтр, который даст динамику играть в своей полосе частот, в своей «зоне комфорта». Но есть главная особенность. Фильтр для акустической системы нельзя рассчитать, слишком много факторов будут влиять на конечную АЧХ акустики (параметры динамика, расположение их на корпусе, бафлстеп и пр.) Нужны измерения конкретных динамиков в конкретном корпусе. Конечно, это касается домашнего Hi Fi, а не low автозвука и поделок из отечественных динамиков в ящике для хранения картофеля.

Так как здесь все же сайт для

а не форум по звукотехнике, я расписывать все подробно не буду, но очень рекомендую ознакомится с этой статьей и данным разделом форума.

Теперь посмотрим на то, что предлагают китайцы тем, кто все таки решился пойти по простому пути и поставить готовый фильтр. Так как проект у меня ультрабюджетный, я выбрал самое дно рынка, самый дешевый и простой разделительный фильтр для двух полос. Плата фильтра продается по одной.

Размеры платы и подключения:

Тут есть система перемычек:

  • Без перемычек — «нормальный» режим.
  • С1 перемычка — усиление высоких частот (ВЧ).
  • С2 перемычка — усиление низких частот (НЧ).
  • Обе перемычки — усиление всего и вся))

Внешний вид платы:

Клеммы: вход с усилителя, выход для НЧ динамика и выход для ВЧ динамика. Так на вскидку, тут фильтр второго порядка (катушка+конденсатор) на НЧ и фильтр первого порядка на ВЧ (конденсатор). Аттенюатор из резисторов отсутствует, если у Вас отличается чувствительность (громкость) динамиков, то это Ваши проблемы. Примерно такую передаточную характеристику мы ждем от такого фильтра:

Но давайте рассмотрим подробнее, перевернув плату топология становится на свои места:

Это все же фильтр первого порядка на НЧ с сабсоник фильтром. Конденсатор тут стоит последовательно с катушкой. На ВЧ работают один либо пара конденсаторов. Вот, собственно, и разница между НЧ фильтром второго порядка и первый порядок + сабсоник:

Сабсоник может быть полезен как раз для мелких динамиков, что бы низкие частоты не шли на динамик, не способный их воспроизвести. Посмотрим теперь номиналы элементов:

Электролит 220 мкФ 50 В, пленка 1,5 мкФ 100 В 2 шт. Индуктивность катушки я не смог определить, она очень мала. Вот ее параметры: Ферритовый каркас 6 мм в диаметре 20 мм длиной, намотана 17 витков проводом 1 мм. Измеренные графики работы этого фильтра:

По два графика — это работа перемычек. Что же мы видим? Да то, что фильтр-то, нифига не фильтрует. По НЧ индуктивность совсем не работает (зеленая линия), не заваливает АЧХ к середине (басовик будет играть весь диапазон), второй график (желтый) работа сабсоника. По ВЧ — обычный фильтр первого порядка. В принципе, все это плату можно заменить одним конденсатором 3,3 мкФ.

Результат (точнее отсутствие результата) вполне ожидаемо, фильтр по НЧ не работает, сэкономили на катушке. Но для моего проекта пойдет и этот)) Но, если задумаете делать много полосную систему, пере

ГАРМОНИКИ

В прошлом большинство нагрузок были линейными (асинхронные двигатели, нагреватели, лампы накаливания), это означает, что ток этих устройств при подключении к синусоидальному напряжению будет синусоидальным. Сейчас большинство нагрузок нелинейно (например, силовая электроника, то есть выпрямители, частотные преобразователи, импульсные источники питания, электронные лампы и т.п.), это означает, что ток через эти устройства при подключении к синусоидальному напряжению будет несинусоидальным (рисунок 1). Такие токи кроме тока основной частоты содержат токи с более высокими частотами, которые искажают форму синусоиды. Гармоники напряжения в основном возникают из-за гармоник тока. Нелинейная нагрузка непосредственно не вызывает появление гармоник напряжения, если не потребляет энергию.

Рис. 1. Сравнение временных диаграмм линейной и нелинейной нагрузки

Тем не менее, напряжение источника будет искажено гармониками тока из-за наличия импеданса источника. Если импеданс источника напряжения мал, токи гармоник будут создавать малые гармонические искажения напряжения. Мерой является коэффициент нелинейных искажений (THD), который определяется как отношение суммы всех гармонических компонентов к значению сигнала на основной частоте. Равенство (1) показывает это отношение для тока (при рассмотрении силовых систем). Для напряжения, мощности и других параметров формулы аналогичны.

Выражение (1) можно переписать как

В (2) In – действующее значение тока n-й гармоники, j = 1 подразумевает основную частоту. Поэтому THD может быть уменьшен путём уменьшения Iгармоник или увеличения Iна осн. частоте.

Типы

Фильтр KROHN-HITE модели 3500 1974 года выпуска.

Использование активных элементов имеет некоторые ограничения. В уравнениях проектирования основных фильтров пренебрегают конечной полосой пропускания усилителей. Доступные активные устройства имеют ограниченную полосу пропускания, поэтому они часто непрактичны на высоких частотах. Усилители потребляют мощность и вносят шум в систему. Определенные топологии схем могут оказаться непрактичными, если не предусмотрен тракт постоянного тока для тока смещения к элементам усилителя. Возможности управления мощностью ограничены каскадами усилителя.

Конфигурации схемы активного фильтра ( топология электронного фильтра ) включают:

  • Фильтры Саллена-Ки и VCVS (низкая чувствительность к допускам компонентов)
  • Переменные фильтры состояния и биквадратные или биквадратные фильтры
  • Двойной полосовой усилитель (DABP)
  • Wien Notch
  • Множественные фильтры обратной связи
  • Fliege (наименьшее количество компонентов для 2 операционных усилителей, но с хорошей управляемостью по частоте и типу)
  • Akerberg Mossberg (одна из топологий, предлагающих полный и независимый контроль над усилением, частотой и типом)

Активные фильтры могут реализовывать те же передаточные функции, что и пассивные фильтры . Общие передаточные функции:

  • Фильтр верхних частот — ослабление частот ниже их пороговых значений.
  • Фильтр нижних частот — ослабление частот выше их точек отсечки.
  • Полосовой фильтр — ослабление частот как выше, так и ниже тех, которые они пропускают.
  • Полосовой фильтр (Notch filter) — ослабление одних частот с пропуском всех остальных.
Возможны комбинации, такие как режекторный и высокочастотный (в фильтре грохота, где большая часть мешающего грохота исходит от определенной частоты). Другой пример — эллиптический фильтр .

Пассивный ≠ плохой

Важно понимать, что активные фильтры по своей природе не «лучше», чем пассивные фильтры. Наоборот, я предпочитаю пассивные фильтры и использую их по мере возможности

Вот некоторые преимущества старомодного подхода:

  • Не нужно беспокоиться о неидеальных характеристиках операционного усилителя – напряжение смещения, ограничения полосы пропускания, шум…
  • Разводка на макетной или реальной печатной плате проще и чище без подключения питания и земли, необходимых для операционного усилителя.
  • Пассивные схемы более просты и, следовательно, менее подвержены ошибкам проектирования – например, сравните фильтр нижних частот резистор-индуктивность-конденсатор (RLC) (смотрите ) с эквивалентной схемой Саллена-Ки (прокрутите вниз до раздела «»).

Активные фильтры, безусловно, имеют свои преимущества. Наиболее заметное преимущество, которое применяется к фильтрам как первого, так и второго порядка, – это улучшенные характеристики импеданса. Операционные усилители обеспечивают высокий входной импеданс и низкий выходной импеданс, и, таким образом, активный фильтр на базе операционного усилителя может превзойти пассивную реализацию, когда входной сигнал поступает с источника с относительно высоким импедансом, или когда выходной сигнал должен подаваться на нагрузку с относительно низким импедансом.

Другим преимуществом является усиление: если сигнал должен быть не только отфильтрован, но и усилен, у вас действительно нет другого выбора, кроме как использовать активный фильтр – либо конкретную топологию активного фильтра, либо схему пассивного фильтра с усилителем.

Прежде чем мы продолжим, я должен отметить, что, безусловно, возможно создать активный фильтр второго порядка, который состоит из операционного усилителя и двух фильтров первого порядка. Два каскада фильтров соединяются последовательно, а операционный усилитель служит буфером между ними. Эти «включенные каскадно» фильтры неизбежно вызывают постепенный переход от полосы пропускания к полосе задерживания, что приводит к нелинейной фазовой характеристике и значительному ослаблению сигналов вблизи конца полосы пропускания. Обсуждаемые ниже две топологии второго порядка обычно предпочтительнее, поскольку они позволяют оптимизировать конкретную схему для более резкого перехода от полосы пропускания к полосе задерживания, минимального ослабления в полосе пропускания или линейной фазовой характеристики.

Лифты

Требуемая компенсация реактивной мощности это в общей сложности нагрузка в виде более чем 100 лифтов. В связи со спецификой их функционирования, такая нагрузка не просто весьма динамична по потреблению электроэнергии, но проблема состоит еще и в том, что характер её полного сопротивления во время потребления и тогда, когда она передает рекуперативную энергию обратно в сеть электроснабжения, очень быстро меняется между емкостным и индуктивным сопротивлением. Суммарный коэффициент искажения синусоидальности кривой тока THD-I также очень высок и быстро меняется. Что же касается гармоник, то для этого типа нагрузок основные частотные компоненты THD – это 5-я, 7-я, 11-я и 13-я гармоники.

Система внутреннего и наружного освещения

Любые современные лампы освещения – светодиодные и компактные люминесцентные лампы, которые используются в настоящее время в целях экономии энергии, генерируют значительные гармонические искажения в диапазоне частот от 150 Гц до 2500 Гц. Широкоэкранные светодиодные цифровые рекламные щиты (с матричным освещением площади до 2000 м2) имеют основную гармонику тока 3-го порядка, но, в целом, гармоническое искажение у них присутствует вплоть до гармоник 50-го порядка.

Что такое фильтр?

Фильтр – это схема, которая удаляет или «отфильтровывает» определенный диапазон частотных компонентов. Другими словами, он разделяет спектр сигнала на частотные составляющие, которые будут передаваться дальше, и частотные составляющие, которые будут блокироваться.

Если у вас нет большого опыта анализа частотной области, вы можете быть не уверены в том, что представляют собой эти частотные компоненты и как они сосуществуют в сигнале, который не может иметь несколько значений напряжения одновременно. Давайте рассмотрим краткий пример, который поможет прояснить эту концепцию.

Давайте представим, что у нас есть аудиосигнал, который состоит из идеальной синусоидальной волны 5 кГц. Мы знаем, как выглядит синусоида во временной области, а в частотной области мы не увидим ничего, кроме частотного «всплеска» на 5 кГц. Теперь предположим, что мы включили генератор на 500 кГц, который вносит в аудиосигнал высокочастотный шум.

Сигнал, видимый на осциллографе, будет по-прежнему представлять собой только одну последовательность напряжений с одним значением на момент времени, но он будет выглядеть по-другому, поскольку его изменения во временной области теперь должны отражать как синусоидальную волну 5 кГц, так и высокочастотные колебания шума.

Однако в частотной области синусоида и шум являются отдельными частотными компонентами, которые присутствуют одновременно в этом одном сигнале. Синусоидальная волна и шум занимают разные участки представления сигнала в частотной области (как показано на диаграмме ниже), и это означает, что мы можем отфильтровать шум, направив сигнал через схему, которая пропускает низкие частоты и блокирует высокие частоты.


Рисунок 3 – Представление аудиосигнала и высокочастотного шума в частотной области

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Предназначение

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот. К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Фильтр для автомобильного сабвуфера

За границами «родной» полосы (эффективно воспроизводимой), звуковое давления, идущее из динамика, заметно снижается и возрастает одновременно с этим уровень искажений. В таком случае говорить о каком-то качестве звука просто глупо и следовательно, чтобы решить проблему, приходится использовать в аудиосистеме несколько динамиков(см.Как выбрать динамики для автомагнитолы своими силами). Такова реалия: это происходит и в домашней акустике, и в автомобильной. Это не новость.

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.Речь идет о следующих схемах:

Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Именно для того, чтобы не нарушать это требование, предназначены электрические фильтры, в роль которых входит выделение конкретных «родных» частот и подавление «чужих».

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.Принято выделять следующие варианты:

Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Полосовой фильтр

  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Параметры

Кроме типов фильтров, принято разделять и их параметры.К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Другой, не менее важный показатель – крутизна спада АЧХ, показывающая, насколько резко фильтр подавляет «чужие» сигналы.

https://youtube.com/watch?v=Di5kUVnd0kI

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот. Принято разделять три популярные схемы этого разделителя для басовика.Они представлены ниже:

Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе. Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Питание/напряжение 12-35 В
Частота среза 100 Гц
Потребление тока 5 мА
Усиление «родной» частотной полосы 6 дБ
Подавление «чужой» полосы 12 дБ

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Применение

LC

-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемыеLC -фильтры, например, простейшийLC -контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Активный или пассивный

Если ваш фильтр состоит только из резисторов, конденсаторов и катушек индуктивности, это пассивный фильтр. Схема становится «активной», когда вы добавляете активный компонент, например, транзистор. Теоретически можно разработать схему активного фильтра на базе отдельного транзистора в сочетании с пассивными компонентами, но на практике в качестве активного компонента выбирается операционный усилитель. Операционные усилители обладают преимуществами в производительности по сравнению с дискретными транзисторами, а также упрощают процесс проектирования и анализа схемы фильтра. Поэтому, читая данную статью, имейте в виду, что для всех практических применений «активный фильтр» означает «активный фильтр на базе операционного усилителя».

Избирательные усилители

Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:

Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f коэффициент передачи фильтра стремится единице и Uвых = Uвх. Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.