Импульсный блок питания

Нормативы и правила безопасности

Для того чтобы избежать неприятных ситуаций с напряжением сети или замыканием, необходимо знать определенные нормы и правила безопасности, прежде всего нужно иметь представление о так называемой мощности. Каждый прибор потребляет мощность от сети, и эта потребляемая мощность — крайне важный параметр, который нужно изучить. Узнать информацию о потребляемой мощности можно из документов – руководство пользования, паспорт или инструкция по эксплуатации. Еще такие сведения можно найти на корпусе самого оборудования. Есть мощные и слабые нагрузки — их нужно научиться отличать.

Приборы, потребляющие более 100 Вт, считаются мощными, следовательно, электроприборы с потреблением ниже 100 Вт можно назвать слабыми. Ошибки возникают при подключении мощной бытовой техники, например, к одной розетке с помощью проводника. Подключать можно лишь определенное количество электроприборов так, чтобы в сумме они не превышали максимально допустимое значение напряжения для стандартных розеток, обычно это 16А. Превысить норму вам не позволит предохранитель, который мгновенно отключит питание в доме, из-за чего розетки сразу будут полностью обесточены. Как же вычислить, какая нагрузка допустима для той или иной розетки?

Знакомая формула со школы гласит, что произведение силы тока и напряжения — есть сама мощность. Напряжение возьмем за 220 В. Тогда не сложно вычислить какая мощность для каждой из розеток будет максимальной. Например:

  1. Розетка 6А – максимально допустимая нагрузка 1320 Вт.
  2. Розетка 10А – максимально допустимая нагрузка 2200 Вт.
  3. Розетка 16А – максимально допустимая нагрузка 3520 Вт.

При превышении нагрузки выбьются пробки, что будет свидетельствовать о том, что сработала защита от перенапряжения или замыкания, поэтому, если соблюдать установленные границы, можно легко избежать подобных неприятностей

Очень важно, чтобы система безопасности была полностью исправна и подобрана под допустимые нормы для всех розеток в доме

Основные рабочие схемы

В большинстве случаев используются две схемы источников БП. Как правило, каждый из них представляет собой бестрансформаторный блок питания с гасящим конденсатором, который служит основным элементом данных приборов. Теоретически считается, что в цепях переменного тока эти устройства вообще не потребляют мощности. Однако в реальности в конденсаторах возникают определенные потери, что приводит к выделению некоторого количества тепла.

Поэтому все конденсаторы подвергаются предварительной проверке на возможность использования его в блоке питания. Для этого их подключают к электрической сети и отслеживают колебания температуры через некоторый промежуток времени. Если конденсатор заметно разогревается, то его нельзя использовать в качестве конструктивного элемента. Допускается лишь незначительный нагрев, неспособный повлиять на общую работоспособность устройства.

1.

Представленные на рисунках источники питания имеют конденсаторный делитель. На рисунке 1 представлен делитель общего назначения на 5 В, рассчитанный на токовую нагрузку до 0,3 А. На рисунке 2 отображается схема источника бесперебойного питания, который применяется в электронно-механических кварцевых часах.

В первой схеме делитель напряжения включает в себя бумажный конденсатор С1 и два оксидных конденсатора С2 и С3. Оба последних элемента составляют неполярное плечо, расположенное ниже С1. Его общая емкость составляет 100 мкФ. Составные части диодного моста, расположенные слева, выступают в качестве поляризующих диодов, предназначенных для оксидной пары С2 и С3. На схеме указаны номиналы элементов, в соответствии с которыми на выходе ток короткого замыкания будет равен 600 мА, а напряжение на конденсаторе С4 без нагрузки – 27 вольт.

2.

Вторая схема бестрансформаторного блока питания предназначена для замены батареек (1,5В), используемых в качестве источника питания в электронно-механических часах. Напряжение, вырабатываемое блоком питания, составляет 1,4 В при средней токовой нагрузке 1 мА. Напряжение на конденсаторе С3 без нагрузки не превышает 12 В. Оно снимается с делителя, поступает на узел с элементами VD1 и VD2, где и происходит его выпрямление.

В каждом из этих вариантов рекомендуется использовать два дополнительных резистора вспомогательного назначения. Первый элемент с сопротивлением от 300 кОм до 1 мОм подключается параллельно с гасящим конденсатором. С помощью данного резистора ускоряется его разрядка, после того как устройство отключено от сети.

Другой резистор имеет сопротивление от 10 до 50 Ом и считается балластным. Он подключается в разрыв какого-либо сетевого провода последовательно с гасящим конденсатором. Данный резистор ограничивает ток, проходящий через диодный мост при подключении устройства к сети. Оба резистора должны обладать мощностью рассеяния не менее 0,5 Вт, позволяющей предотвратить вероятные поверхностные пробои этих деталей действием высокого напряжения. Балластный резистор снижает нагрузку на стабилитрон, но одновременно наблюдается рост средней мощности, потребляемой самим блоком питания.

Общее устройство и принцип действия

Представленная схема отличается простотой, надежностью и эффективностью. Она может быть изготовлена не только методом навесного монтажа, но и в виде печатной платы. Данная схема на двенадцать вольт является рабочей, требуется лишь заранее рассчитать параметры балластового гасящего конденсатора и подобрать нужное значение тока для конкретного устройства. Практически можно сделать 5,5-вольтовый блок с возможностью увеличения напряжения до 25 В.

Основой устройства служит балластовый конденсатор, гасящий сетевое напряжение. После этого ток попадает в диодный выпрямитель, а второй конденсатор выполняет функцию фильтра. Иногда возникает необходимость быстро разрядить оба конденсатора. С этой целью в схеме предусмотрены резисторы R1 и R2. Еще один резистор R3 используется в качестве ограничителя тока при включении нагрузки.

Расчет балластного конденсатора выполняется до сборки схемы. Для этого используется простая формула С = 3200хI/Uc, в которой I является током нагрузки (А), Uc – сетевым напряжением, С – емкостью конденсатора (мкФ). Чаще всего такие расчеты используются для светодиодов.

В качестве примера можно взять любой прибор с током 150 мА. Это может быть обычная светодиодная лампа. Сетевое напряжение будет 230 В. Таким образом, 3200 х 0,15/230 = 2,08 мкФ. Номинал конденсатора выбирается наиболее близко к расчетному, то есть, его емкость составит 2,2 мкФ, а расчетное напряжение – 400 В.

Основная область применения

Необходимость подобного масштабирования сопротивления существует практически во всех областях, связанных с передачей электрических сигналов и энергии. Но наибольшее применение согласующие трансформаторы получили в следующих сферах:

  1. В усилителях низкой частоты (звуковых усилителях) в качестве межкаскадных и выходных трансформаторов. Необходимость в подобных устройствах была связана с тем, что старые усилители изготавливались на ламповой компонентной базе. При этом практически все лампы отличались высоким внутренним сопротивлением и подключение к ним 4 или 8-омных динамиков напрямую к ним было невозможно. Даже с появлением транзисторов, операционных усилителей ситуация в корне не изменилась, так как без согласования сопротивлений увеличивался уровень искажений сигнала.
  2. В качестве входных согласующие трансформаторы применяются в звуковоспроизводящей аппаратуре для подключения микрофонов, звукоснимателей различных типов. Сопротивление этих устройств варьируется в пределах от десятка до сотни ом, а для подключения к усиливающей аппаратуре требуются значения, которые будут на порядок больше.
  3. Еще одна сфера связана с передачей радиосигнала. Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приемным и передающим устройствам. Без их применения получить качественный сигнал не удается. Отметим, что в этих целях используются высокочастотные согласующие трансформаторы.

Также читайте: Назначение диэлектрических ковриков в электроустановках

На этом область применения не ограничивается. Так, даже обычный сварочный трансформатор в какой-то степени можно считать согласующим, что обусловлено требованиями к величине нагрузки на электрические сети.

Расчет параметров

Для предотвращения пробоя деталей бестрансформаторных схем их необходимо правильно рассчитать. Для каждого устройства существует свой метод.

Транзисторный блок считают по закону Ома: U=I×R. Необходимо рассчитать сопротивления R1, R2, R3 исходя из величины, напряжения и тока, которые выдерживает каждый стабилитрон.

R=U макс/I мин.

Расчет балластного конденсатора для блоков с RC-цепочкой производится по следующей формуле C = I эфф/2*3,14*f *√(Uп²-Uв²), где:

  • С — емкость балласта (фарад);
  • Uп и Uв — питающее и выходное напряжения (вольт);
  • I эфф — ток нагрузки;
  • f — частота сигнала на входе устройства (герц).

Так как 1 фарад = 1 млн микрофарад, то формулу можно упростить:

C = 3200*I эфф/√(Uп²-Uв²).

Сопротивление R1 (кОм) примерно равняется 0,025 от величины балластного конденсатора. Его мощность не должна быть ниже 1 Вт (оптимально 2-5 Вт).

Если ручной подсчет неудобен, найдите и используйте калькулятор в режиме онлайн.

Принцип действия осветительного прибора

Схема подключения светодиодной ленты проста в применении. Питание прибора обеспечивается за счет источников электроэнергии в 12v. Для преобразования напряжения сети в 220в нужен источник питания со стабилизатором тока, то есть драйвером, представляющим собой переходник. Для этих устройств, обладающих отличиями, характерен разный способ функционирования.

Одиночные светодиоды соединяются последовательно, а сама схема блока питания функционирует при наличии ограничительного резистора. Для питания светодиода требуется именно ток. При его падении в цепи ток протекает через все элементы, то есть эти самые 2–3 В нужны для функционирования устройства.

Светодиоды — это приборы, обладающие чувствительностью к величине тока, который нужно стабилизировать. Иначе его превышение отрицательно скажется на сроке службы устройства. Разобравшись в том, какой блок питания нужен для светодиодного освещения, можно обеспечить стабилизацию напряжения источника тока.

Для всех полупроводников характерен повышенный уровень зависимости от температуры. Лента — это основа температурных измерителей электронного типа. Если температура внешней среды изменяется, то одновременно происходит смена силы тока, протекающего через осветительный прибор при условии постоянного входного напряжения питания светодиодной ленты.

Применение стабилизаторов связано с тем, что светодиодное освещение зачастую необходимо там, где диапазон температурных колебаний не слишком высок. Другим преимуществом применения стабилизаторов является параллельное подключение осветительных приборов. При падении напряжения в такой цепи сила тока начинает расти. Драйверы обычно применяются для освещения на улице, поскольку колебания температур являются большими.

Подключение устройства в схему электроснабжения галогенных светильников

В случае подсоединения трансформаторов рекомендуется придерживаться схематического расположения отдельных источников света, когда их количество более двух. К тому же требуется выбрать подходящее место для установки преобразователя.

Основные требования к подключению

Инструкции любых трансформаторов непременно содержат главные правила, ими запрещается пренебрегать при выполнении монтажных работ:

  • Понижающий прибор и лампу требуется соединять с кабелем, длина которого не превышает 1,5 м, а сечение от 1 мм2. В ином случае яркость лампы будет недостаточной, свет — неравномерным, есть риск нагревания провода.
  • Если подключается два и больше светильников, требуется непременно применить схему «звезда»: к каждой лампе подсоединяется отдельный кабель. Последние должны быть одинаковые.
  • Если предполагается длина кабеля больше 1,5 м, то его сечение увеличивается в пропорциональном соотношении.
  • Расстояние до светильника не меньше 0,2 м.
  • Корректно высчитать мощность ламп, соответствие последних понижающему электроприбору.

Внимание! Категорически запрещается включать трансформаторы без нагрузки

Требования по установке

Допустимо использование нескольких схем подключения галогенных ламп через трансформатор:

Одна из самых простых: применяется один выключатель (с 1-ой клавишей) и трансформатор. Проводники крепятся на клеммы «входа» L и N. Для присоединения ламп на «выходе» предпочитают провода из меди (минимальное сечение 1,2 мм2). Подключение галогенных ламп 12В — параллельное.

Вам это будет интересно Подключение счетчика Меркурий 201

Простая схема подключения понижающего прибора

Разделение общего количества светильников на две одинаковые половины, подсоединение к разным трансформаторам. В вышеописанном примере 4 лампы по 40 Вт, мощность 2-х — 80 Вт. Следственно, следует использовать трансформатор 105 Вт. Рекомендуется отдельный понижающий прибор питать своими проводами. Когда последние соединятся в распределительном боксе, это существенно облегчит возможный в будущем ремонт. При подключении допустимо применить 1-клавишный или 2-клавишный выключатель. После выполнения всех работ лампочки возможно запитать раздельно. Когда один трансформатор выйдет из рабочего состояния, это позволит сберечь денежные средства и оставить систему работающей.

Схема подключения двух галогенных лампочек (и более)Важная информация! Трансформаторы во время работы нагреваются. Поэтому их нужно устанавливать на поверхностях из материалов, которые устойчивы к воспламенению, не плавятся.

Эксплуатационный ресурс, надёжность галогенных и светодиодных ламп перекроют издержки на монтаж трансформаторного устройства. А защитные свойства последнего обеспечат более продолжительную службу таких источников света, чем обычных лампочек накаливания.

Подключение через выключатель

Разумеется, любой осветительный прибор должен подсоединяться к электросети через выключатель. Причём светодиодные ленты, управляемые с пульта, не должны быть исключением. Но на каком участке схемы должен находиться выключатель, чтобы эксплуатация всей осветительной системы была безопасной? В этом вопросе только один правильный ответ: в самом начале схемы, разрывая фазу в цепи переменного тока. Если выключатель установить в цепи постоянного тока, то блок питания будет всегда оставаться под напряжением. Это плохо по двум причинам. Во-первых, радиодетали имеют рабочий ресурс, который будет исчерпан значительно раньше. Во-вторых, блоку питания придётся круглосуточно противостоять импульсным сетевым помехам и скачкам напряжения, которые только ускорят его износ.

Читать также: Какой заточной станок выбрать для дома

Схема подключения

Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов:

  1. Установить источник питания с чётким соблюдением соответствия контактов.
  2. Прикрепить радиатор к транзистору.
  3. Собрать электрическую схему, используя фанеру, деревянную коробку или кусок пластика в качестве диэлектрической подложки.
  4. Изолировать катушку от схемы пластиной диэлектрика, имеющей отверстия для подключения проводов.
  5. Установить первичную обмотку, исключив её падение и соприкосновение с другой обмоткой. В центре предусмотреть отверстие для вторичной катушки, обеспечив расстояние между ними не менее 1 см.
  6. Закрепить вторичную обмотку, осуществить необходимые соединения, руководствуясь схемой.

Сборка более мощного трансформатора происходит по аналогичной схеме. Чтобы добиться большой мощности, потребуется:

  • Увеличить размеры катушек и сечения обмоток в 1,1−2,5 раза.
  • Установить источник переменного тока с напряжением 3−5 кВт.
  • Добавить терминал в виде тороида.
  • Обеспечить хорошее заземление.

Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров.

Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует:

  1. Установить переменный резистор в среднюю позицию.
  2. Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя.

Как устроен ШИМ контроллер

В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.

Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.

Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия шим контроллера блока питания.

Распиновка TL494.

Назначение выводов микросхемы указано в таблице.

Назначение Обозначение Номер вывода Номер вывода Обозначение Назначение
Прямой вход усилителя ошибки 1 IN1 1 16 IN2 Прямой вход усилителя ошибки 1
Инверсный вход усилителя ошибки 1 ­IN1 2 15 IN2 Инверсный вход усилителя ошибки 1
Выход обратной связи FB 3 14 Vref Выход опорного напряжения
Управление временем задержки DTC 4 13 ОТС Выбор режима работы
Частотозадающий конденсатор C 5 12 VCC Напряжение питания
Частотозадающий резистор R 6 11 С2 Коллектор 2-го транзистора
Общий провод GND 7 10 E1 Эмиттер 1-го транзистора
Коллектор 1-го транзистора C1 8 9 E2 Эмиттер 2 -го транзистора

На выводы 7 и 12 подается напряжение питания +7..40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.

Структурная схема TL494.

Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.

Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.

Схема ИИП на TL494.

В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.

Для наглядности рекомендуем серию тематических видеороликов.

Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.

Подключение галогенных ламп через трансформатор

Технология подключения зависит от места расположения ламп, стадии ремонта и проекта. Принципиальные схемы подключения трансформатора к галогенным источникам света разделяются на следующие виды:

  • одноклавишная цепь питания ламп, использующая один импульсный блок;
  • одноклавишная разветвленная цепь питания, использующая два или более блоков.

Рекомендуется пользоваться следующим техническим приемом. Если в цепи одноклавишного выключателя находится более 4-5 ламп, то есть предполагаемая площадь освещения большая, лучше проектировать разветвленную проводку, содержащую два трансформатора.

Плюс этой схемы трансформатора для галогенных ламп состоит в том, что при внезапно вышедшем из строя электронном блоке, подача напряжения прекратится только на одну ветвь. В случае с общим устройством, погаснут все лампочки сразу, понадобится срочная замена блока, что не всегда возможно сделать.

Процесс монтажа электропроводки с одним блоком производят обычным путем. Трансформатор имеет клеммы входа и выхода, на них, соответственно имеется маркировка нулевого и фазного проводов. Через соединение проводов в распределительной коробке, куда подключен одноклавишный выключатель, размыкающий фазовый провод, подается электропитание.

Лампы от понижающего блока подключают параллельно, при этом нужно добиться (учесть в проекте), чтобы длина проводов между трансформатором и каждой лампочкой была одинаковая. Это делается для того, чтобы в низковольтных цепях предупредить разность в падении напряжения.

То есть, если одна лампа соединена проводами длиной 30см, а вторая 3м, то первая будет гореть ярче, а в более длинной цепи возможен нагрев проводов. Проектировать проводку нужно так, чтобы длина любого участка цепи «трансформатор-лампа» равнялась примерно 2 м. Выбор сечения кабеля по току при такой длине должен производиться, исходя из минимального значения в 1.5 мм2.

Монтаж проводки с двумя трансформаторами производят так, чтобы от распределительной коробки питался каждый электронный блок со своей ветвью ламп отдельно. От понижающего устройства каждой ветви подключают лампы параллельно, учитывая приведенные выше рекомендации.

Схемы с большим количеством лампочек могут подключаться с использованием распределительной коробки между выходом трансформатора и лампами. Такой подход актуален при недостатке выходных клемм на самом устройстве или связан с местом его размещения.

В случае такого проекта, категорически запрещается использовать провод на участке между трансформатором и распределительной коробкой без расчета его сечения, так как низковольтные цепи пропускают через себя гораздо больший ток, чем цепи с питающим напряжением 220в при одинаковых значениях потребляемой мощности.

Например, трансформатор для галогенных ламп 12в питает напряжением 7 осветительных приборов, мощностью 35Вт каждый. Лампы подключены параллельно через распределительную коробку, требуется узнать сечение провода между выходом блока и распределителем.

Расчет тока: 10∙35/12=29А, то есть, согласно таблицам сечения электрических кабелей нужен провод сечением не менее 4 мм2.

Чтобы избежать подобных нагрузок, рекомендуется использовать несколько трансформаторов на небольшие группы ламп.

Перед установкой понижающего устройства нужно выделить доступное место для его установки, с таким расчетом, чтобы соблюдались следующие пункты:

  • обеспечение легкого и быстрого доступа;
  • объем замкнутого пространства не менее 10л (для отвода тепла);
  • минимальное расстояние до ближайшего галогенового источника света должно быть не менее 250 мм (это позволит избежать дополнительного нагрева).

Электрические кабели используются медные и многожильные. Если возникает потребность их удлинения, то используются клеммные колодки или зажимы. Не допускается контакт оголенных частей провода с крепежными элементами мебельных или потолочных конструкций.

Производители, выпускающие электронные понижающие трансформаторы: Osram, VS, Comtech, Tashibra, Delux. Продукция фирмы Osram считается одной из лучших в сфере электротехники. Покупая устройства малоизвестных китайских фирм, нужно быть готовым к тому, что изделия могут оказаться сомнительного качества и с малым сроком службы.

БЕСТРАНСФОРМАТОРНЫЙ БП НА 5В

   Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.

   После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой. 

   Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех. Устройство работает очень стабильно, но имеет всего один недостаток — малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи. Печатная плата и схема — в архиве. 

   Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже:

   Однако учтите, что из-за отсутствия сетевого трансформатора, есть риск удара током фазы, поэтому все токонесущие элементы БП и девайса, что к нему подключен, должны быть тщательно изолированны! Автор статьи — АКА (Артур).

   Форум по источникам питания

   Обсудить статью БЕСТРАНСФОРМАТОРНЫЙ БП НА 5В

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора Сф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3. 10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10. 30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора Сф должно быть не менее Uст·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:

Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора Сф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

Маркировка светодиодных лент и их различия

Один из распространенных типов светодиодного освещения — лента. Ее мощность напрямую зависит от того, сколько подключено к сети питания рабочих диодов. В производстве допускаются диоды разных габаритов, отсюда и получилось две категории лент:

  • SMD 3028;
  • SMD 5050.

Теперь рассмотрим расшифровку маркировки. Цифры 30 и 28, к примеру, указывают на конкретный размер. То есть размер светодиода будет 3,0 мм на 2,8 мм. В случае с 5050, размер будет 5,0 на 5,0 миллиметров. Ленты с маркировкой SMD 3028 могут содержать 60, 120 и 240 световых диодов. На ленте SMD 5050 может располагаться 30, 60 и 120 диодов.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать Uст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В — если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.