Как повысить переменное и постоянное напряжение?

Содержание

Предварительные работы

Прежде чем начать работу по уменьшению тока в электрической цепи, необходимо позаботиться о безопасности рабочего места. Для этого следует убедиться в том, что место полностью защищено от поражения электрическим током

Кроме того, важно запомнить, что перед началом работы необходимо обесточить все электрические цепи

Так как сила тока зависит от двух параметров – сопротивления и напряжения, существует несколько простых способов уменьшить эту величину. Наиболее распространённым и простым методом является добавление дополнительного сопротивления в сеть или подключение какого-либо устройства в разрыв цепи, которое будет обеспечивать данную функцию.

Чтобы измерить необходимые показатели, будет нужен мультиметр. Напряжение, поданное на электрическую цепь, необходимо отключить. Для этого достаточно перевести выключатель в необходимый режим. После того как индикатор устройства или показатели мультиметра сообщат о том, что сеть обесточена, можно приступать к работе. Теперь следует определить сопротивление, которое обеспечивает вводное устройство. Переключив мультиметр в режим омметра, можно узнать данный параметр. Если нет необходимого оборудования, то узнать сопротивление можно с помощью сложения всех показателей сопротивления в данной цепи.

Повышение напряжения в сети электропитания

Если же проблема пониженного напряжения актуальна для всех в округе, то необходимо повысить данный показатель у себя. В данном случае не стоит опасаться больших растрат. В большинстве случаев с указанной проблемой можно справиться быстро и только при помощи подручных средств. При этом все требования безопасности и технической грамотности не будут нарушены.

Если низкое напряжение – стабильное состояние сети, то «выручит» стандартный понижающий трансформатор на напряжение от 12 до 36 В. И здесь нет никакой ошибки. Именно понижающий. Причем невысокой мощности. Устройство в 100 Вт сможет «вытянуть» 500-ваттную нагрузку, а в 1 кВт – 5-киловаттную.

Напряжение в сети можно повысить до допустимого уровня. Никакого волшебства. Нужно лишь указанное приспособление использовать в качестве повышающего автотрансформатора, прибавив в линейному напряжение понижающей обмотки. В этом случае 180 В в розетке преобразуется в 192 В (если использовать понижающий трансформатор на 12 В). Не много. Но вполне достаточно для работы бытовой техники. Если показатель напряжения придет в норму, то автотрансформатор будет выдавать 232 В – это все еще норма. Использование 36 В добавочных может повысить величину напряжения до 256 В (при нормализации показателя до 220 В), что уже негативно скажется на работе электрических приборов. Поэтому оптимальным является понижающий трансформатор на 24 В.

Как повысить силу электрического тока. Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер. Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза. Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:

Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.

При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения.

Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника.

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди.

Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике.

Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий. Следующий материал – это железо.

Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется.

Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Причины появления скачков напряжения

Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов

Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

3 причина появления «скачков напряжения» — аварии в передающих электрических сетях

Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

4 причина появления «скачков напряжения» — обрыв «нуля»

Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.

5 причина появления «скачков напряжения» — ослабление заземления

Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.

6 причина появления «скачков напряжения» — значительная перегрузка сети

Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.

Для схемы «Генератор для электронной гравировки»

Использование для электронной гравировки тока высокой частоты при высоком напряжении дает вероятность проводить гравировку очень тонкими штрихами как на дереве, так и на других обугливающихся материалах.Процесс гравировки основан на прохождении токов высокой частоты (80 кГц и выше) через малые паразитные емкости, при котором между острием резца и гравируемой поверхностью возникает электрическая дуга.Процесс гравировки дает большие возможности и требует меньших усилий, чем выжигание.Источником тока высокой частоты служит генератор, электрическая схема которого приведена на рисунке.Задающий генератор собран на транзисторах VT1 и VT2. Транзистор VT1 обеспечивает усиление сигнала обратной связи, снимаемого с резистора R2.Частоту колебаний определяет входная и выходная проводимости транзисторов VT1 и VT2 и индуктивность катушки L1. Изменение частоты генерации происходит из-за изменения проводимости транзисторов при изменении питающего напряжения.Питание задающего генератора -от регулируемого стабилизатора напряжения на транзисторах VT5 и VT6. регулятор мощности на симисторе тс122-25 Изменяя выходное напряжение стабилизатора резистором R12, регулируем частоту генерируемых колебаний в пределах 80…150 кГц. Сигнал от задающего генератора через эмит-терный повторитель на транзисторе VT3 подается на выходной каскад на транзисторе VT4, в коллекторной цепи которого включена первичная обмотка трансформатора

T2. Напряжение с вторичной обмотки подается на резец. Резец представляет собой стержень с остро отточенным концом, вставленный в держатель, изготовленный из фторопласта или другого материала. Нижний конец вторичной обмоткитрансформатора Т2 подключен к металлическому электроду 2 через конденсатор С5. который предохраняет от режима короткого замыкания при касании резцом 1 электрода 2 при возбуждении дуги. Благодаря включению диода VD1, на резце будут отрицательные импульсы высокочастотного напряжения, которые через паразитные емкости в материале образуют ду… Смотреть описание схемы …

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент

Повышение постоянного напряжения

Общий принцип увеличения постоянного напряжения в произвольное число раз

Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока. Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.

Структурная схема такого преобразователя показана на рисунке 5.


Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.


Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.


Рис. 7. Еще пример: умножитель в 6 и 8 раз


Рис. 8. Учетверитель напряжения

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Способы увеличения частоты тока

Наиболее популярным на сегодняшний день методом увеличения (или уменьшения) частоты тока является применение частотного преобразователя. Частотные преобразователи позволяют получить из однофазного или трехфазного переменного тока промышленной частоты (50 или 60 Гц) ток требуемой частоты, например от 1 до 800 Гц, для питания однофазных или трехфазных двигателей.

Наряду с электронными частотными преобразователями, с целью увеличения частоты тока, применяют и электроиндукционные частотные преобразователи, в которых например асинхронный двигатель с фазным ротором работает частично в режиме генератора. Еще есть умформеры — двигатели-генераторы, о которых также будет рассказано в данной статье.

Электронные преобразователи частоты

Электронные преобразователи частоты позволяют плавно регулировать скорость синхронных и асинхронных двигателей благодаря плавному повышению частоты на выходе преобразователя до заданного значения. Наиболее простой подход обеспечивается заданием постоянной характеристики V/f, а более прогрессивные решения используют векторное управление.

Частотные преобразователи, обычно, включают в себя выпрямитель, который преобразует переменный ток промышленной частоты в постоянный; после выпрямителя стоит инвертор, в простейшем виде — на базе ШИМ, который преобразует постоянное напряжение в переменный ток нагрузки, причем частота и амплитуда задаются уже пользователем, и эти параметры могут отличаться от сетевых параметров на входе в большую или в меньшую сторону.

Выходной блок электронного преобразователя частоты чаще всего представляет собой тиристорный или транзисторный мост, состоящий из четырех или из шести ключей, которые и формируют требуемый ток для питания нагрузки, в частности — электродвигателя. Для сглаживания помех в выходном напряжении, на выходе добавляют EMC-фильтр.

Как говорилось выше, электронный преобразователь частоты использует для своей работы в качестве ключей тиристоры или транзисторы. Для управления ключами применяется микропроцессорный модуль, служащий контроллером, и одновременно выполняющий ряд диагностических и защитных функций.

Между тем, частотные преобразователи бывают все таки двух классов: с непосредственной связью, и с промежуточным звеном постоянного тока. При выборе между этими двумя классами взвешивают достоинства и недостатки того и другого, и определяют целесообразность того или иного для решения насущной задачи.

С непосредственной связью

Преобразователи с непосредственной связью отличаются тем, что в них используется управляемый выпрямитель, в котором группы тиристоров поочередно отпираясь коммутируют нагрузку, например обмотки двигателя, прямо к питающей сети.

В результате на выходе получаются кусочки синусоид сетевого напряжения, а эквивалентная частота на выходе (для двигателя) становится меньше сетевой, в пределах 60% от нее, то есть от 0 до 36 Гц для 60 Гц входа.

Такие характеристики не позволяют в широких пределах варьировать параметры оборудования в промышленности, от того и спрос на данные решения низок. Кроме этого незапираемые тиристоры сложно управляются, стоимость схем становится выше, да и помех на выходе много, требуются компенсаторы, и как следствие габариты высокие, а КПД низкий.

С звеном постоянного тока

Гораздо лучше в этом отношении частотные преобразователи с ярко выраженным звеном постоянного тока, где сначала переменный сетевой ток выпрямляется, фильтруется, а затем снова схемой на электронных ключах преобразуется в переменный ток нужной частоты и амплитуды. Здесь частота может быть значительно выше. Безусловно, двойное преобразование несколько снижает КПД, зато выходные параметры по частоте как раз соответствуют требованиям потребителя.

Чтобы на обмотках двигателя получить чистый синус, используют схему инвертора, в котором напряжение нужной формы получается благодаря широтно-импульсной модуляции (ШИМ). Электронными ключами здесь служат запираемые тиристоры или IGBT-транзисторы.

Как повысить силу тока в зарядном устройстве

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству

Вот и все — остается обратить внимание на параметры тока и напряжения. Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме

Также можно увидеть максимальные и минимальные I, имеющие место в период цикла

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Р2 = 100 ватт

Р2 = U2  x I2

где:

U2 = 18 вольт;

I2 – ток;

Допустимый ток во вторичной обмотке будет равен:

I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Кто знает как уменьшить силу тока без увеличения напряжения

Здраствуйте, кто знает как уменьшить силу тока без увеличения напряжения? Хочу приобрести светодиодную ленту на 12 v 2A. Нашел блок питания на 12 v 4A И вот хочу узнать, как нибудь можно подключить блок к ленте? А может такой ток будет нормальным для ленты?

18 comments on “ Кто знает как уменьшить силу тока без увеличения напряжения ”

Сергей говорит: Никита говорит: Сергей, точно?Не сгорит? Я читал что для светодиодов обязательно ограничение силы тока

Вячеслав говорит:

Никита, в ленте для этого резисторы стоят. Но если уж так сильно сцышь втыкай через амперметр первый раз.

Вася говорит:

Да ты хоть на 100 ампер блок питания используй все равно лента будет потреблять 2а Потому, что ток это величина относящаяся к нагрузке. Короче можно и учи закон ома.

Макс говорит:

Сделай ограничение тока

Никита говорит:

Вася, закон ома знаю(для участка цепи)

Сергей говорит:

Никита, знатокмля)))) если знал не задавал бы такой вопрос. Включай и не парься.

Никита говорит:

Сергей, ну I=U/R кажись,только в этом случае он не помогает

Сергей говорит:

Никита, почему не помогает? Что такое R?

Никита говорит: Сергей говорит:

Никита, если возьмёшь метр ленты, то сопротивление r, если 2 метра то сопротивление уменьшится и стане 2/r. При постоянном напряжении U меняется будет только сила тока I. Следовательно сила тока зависит только от сопротивления. В твоем случае от количества метров в ленте. Значит на блок питания в 4а можно повесить до двух твоих лет, или вообще один светодиод. Главное не превышать заданых 4а.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств. Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения. Величину I можно повысить и другим путем, уменьшив сопротивление

К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Для схемы «УСИЛИТЕЛЬ МОЩНОСТИ CB-РАДИОСТАНЦИИ»

ВЧ усилители мощностиУСИЛИТЕЛЬ МОЩНОСТИ CB серийно выпускается усилитель РЧ модели 737, предназначенный для работы в СВ-диапазоне. Мною была разработана печатная плата под отечественные радиоэлементы, построена и опробована схема этого усилителя мощности. Схема с нашими аналогами работоспособна и показала очень неплохие результаты несмотря на простоту изготовления. Усилитель получился широкополосным, захватывающим все радиолюбительские диапазоны со 160 м до 10 м включительно. Принципиальная схема усилителя показана на рис.1. На рис.2 и 3 приведены печатная плата и расположение деталей на плате. Для изготовления трансформатора Т1 были использованы шесть колец с магнитной проницаемостью 600 НН (до 1000 НН — некритично) типоразмера 7 х 4 х 2, по три кольца склеены клеем БФ2, а потом полученные ферритовые «трубки» складывают бок о бок и тоже заливают клеем. Таким образом, продевая в эти трубки по три витка первичной обмотки и вторичной, получаем трансформатор Т1 (рис.4).Для изготовлениятрансформатора Т2 нужны те же кольца — 20 шт, латунные или медные трубки — 2 шт. Электрическая схема трансивера Эфир-М по 22 мм длиной каждая и наружным диаметром 4 мм. Мною была использована трубка от старой телескопической антенны. Подробно останавливаться не буду, сошлюсь на , где есть методика постройки широкополосноготрансформатора с короткозамкнутым витком, привожу лишь эскиз расположения выводовтрансформатора Т2 (рис.5). Катушка L1 выполнена на цилиндрическом каркасе диаметром 8 мм и длиной 10 мм. Обмотка состоит из 19 витков ПЭЛ-0,16 мм. Намотка — виток к витку. Правильно собранная схема усилителя работает сразу, гок холостого хода усилителя зависит от применяемых транзисторов и выставляется R3. Усилитель работает от источника +12 В, но сохраняет работоспособнос… Смотреть описание схемы …