Лопасти для ветрогенератора: характеристики, как рассчитать, своими руками

Содержание

Типы вертикальных ветрогенераторов

Внешний вид и характеристики вертикальных ветрогенераторов во многом зависят от конструктивного строения этих устройств. Давайте разберем основные.

Ортогональные системы

Ветрогенераторы вертикальные 10 квт

Тех характеристика вертикального ветрогенератора ортогонального типа подразумевает не очень высокий КПД при больших габаритах, при сравнении с горизонтально-осевыми устройствами, однако независимость от направления ветра делает его более приоритетным.

  • В основе конструкции данные генераторы имеют центральную ось вращения (вертикальную) и несколько плоских лопастей, расположенных ей параллельно.
  • Все лопасти удалены от центра вращения на определенное расстояние.
  • При таком устройстве приводной механизм может быть размещен на уровне земли, что существенно облегчает техническое обслуживание и ремонтные мероприятия.

Ротор Дарье

Вертикальные ветрогенераторы 10 квт с ротором Дарье

Лопасти данного генератора совсем непохожи на предыдущие. Обычно это две-три полосы характерной изогнутой формы, которые не имеют аэродинамический профиль. Крепятся они у основания и на верхушке центральной оси вращения.

Для турбины также не важно направление ветра.
Устройство способно развивать большую скорость вращения.
Привод также может быть размещен у основания.

Эффективность такого ветрогенератора  также не очень высока из-за тех же динамических нагрузок, которые еще ложатся и на вращающиеся узлы. При этом запустить генератор может только порыв ветра достаточной силы – если поток будет усиливаться равномерно, старта не будет.

Ротор Савониуса

Ветрогенератор с вертикальной осью вращения с ротором Савониуса

Данные установки имеют лопастную систему полуцилиндрического типа.

  • От прочих конструкций данные генераторы отличает высокий крутящий пусковой момент.
  • Система способна эффективно работать даже при низкой силе ветра.
  • Мощность выпускаемых генераторов такого типа не превышает 5 кВт.
  • Они редко используются как отдельные источники энергии, применяясь в основном для создания пускового момента в роторах Дарье.
  • Из недостатков системы можно отметить большой расход металла, а, следовательно, и вес.
  • КПД устройства также ниже, чем у генераторов на горизонтальной оси.

Многолопастные роторы с направляющей системой

Ветрогенератор вертикальный 10 квт многолопастной

Данная конструкция, по сути, мало чем отличается от классической ортогональной системы, за исключением того, что ротор состоит из двух рядов лопастей (внешнего и внутреннего).

  • Внешний ряд выступает направляющим контуром. Будучи статичным, его задача состоит в улавливании потока ветра, его сжатии и направлении внутрь. Таким образом, поток ветра, фактически, усиливается.
  • Внутренний ряд вращается от потока воздуха, который отражается от внешнего под определенным углом.
  • Специалисты считают, что данные генераторы являются самыми эффективными, однако слишком высокая цена делают эту категорию устройств менее окупаемой.
  • КПД конструкции очень высокое, что позволяет ей эффективно работать даже при низких скоростях ветра.

Ветрогенераторы с геликоидными роторами

Ветряк с геликоидным ротором

Такие роторы называют еще установками Горлова. По сути, перед нами снова модификация ортогональной системы, однако лопасти используются не прямые, а закрученные по дуге.

  • Подобная конструкция позволяет легко улавливать даже незначительные потоки воздуха и вращаться плавно, без рывков, благодаря чему существенно снижается динамическая нагрузка, а основания и вращающиеся узлы работают долго и исправно.
  • Надежность таких роторов очень высока, однако ложки дегтя не закинуть не можем. Во время работы агрегата создаются достаточно громкие звуковые эффекты, включая звуковые волны, короткого диапазона.
  • Изготовление лопастей сложной формы – дело достаточно затратное, поэтому и стоимость готовой установки довольно высока.

Вертикально-осевые роторы

Осевой ротор с вертикальным расположением лопастей

Лопасти такого генератора располагаются вертикально, плавно изгибаются и немного напоминают крыло от авиалайнера.

  • Эти установки довольно быстро набирают рабочую скорость, и практически не издают шума, а значит, не мешают окружающим.
  • Конструкция очень эффективна и имеет довольно солидный рабочий ресурс.
  • Производство установки тоже нельзя отнести к самым дорогим, поэтому они пользуются хорошим спросом.

Виды ветрогенераторов

Они классифицируются по особенностям технического исполнения, что сказывается на функционале и возможностях.

Вертикальные

В зависимости от того, какой тип ротора и лопастей используется, вертикальные ветрогенераторы могут быть ортогональными, подвида савониуса, многолопастными (здесь присутствует направляющий механизм), дарье, геликойдными. Главным преимуществом устройств является тот факт, что их не нужно корректировать относительно ветра, они хорошо работают при любом его направлении. Поэтому они не оснащаются устройствами, улавливающими воздушные потоки.

Благодаря простоте агрегаты можно размещать на земле, по сравнению с горизонтальными вариантами, изготовить своими руками лопасти для такого ветрогенератора будет гораздо проще. Минусом является невысокая производительность вертикальных моделей, сфера применения ограничена из-за их недостаточного КПД.

Горизонтальные

Здесь варьируется количество лопастей. Самую высокую скорость проявляют однолопастные экземпляры, если сравнивать с трехлопастными, при идентичной силе ветра они крутятся примерно в 2 раза быстрее. КПД горизонтальных моделей существенно превышает производительность вертикальных.

Ветрогенераторы с горизонтальной осью

Горизонтально-осевая ориентация имеет уязвимость – ее работоспособность привязана к направлению ветра, поэтому устройство оснащается дополнительными механизмами, улавливающими движение воздушных потоков.

Подготовительный этап

Перед тем как приступать к созданию ветряной установки, необходимо подготовить и собрать все составные элементы будущей конструкции. Подготовка начинается с выбора автомобильного генератора. Он должен обладать повышенной мощностью, поэтому лучше всего подойдет агрегат с грузового автомобиля или автобуса. Все остальные узлы рекомендуется брать с одной и той же машины, чтобы не нарушать комплектность. В первую очередь это касается аккумулятора, реле и других деталей.

Поскольку потребители должны обеспечиваться переменным током, нужно заранее позаботиться о приобретении инвертора или другого преобразователя. Мощность инвертора должна соответствовать мощности будущего ветрогенератора.

  • Генератора
  • Аккумуляторная батарея
  • Реле зарядки аккумулятора
  • Вольтметр
  • Материал для изготовления лопастей
  • Болты в комплекте с гайками и шайбами
  • Хомуты для креплений

Могут потребоваться и другие детали, в зависимости от индивидуальных особенностей конструкции. Далее, прежде чем изготавливать ветряк своими руками из автомобильного генератора, необходимо выполнить расчеты, для которых используется мощность генератора и инвертора, емкость аккумулятора и другие параметры, в том числе и количество потребителей, имеющихся в доме. Расчет мощности следует производить в зависимости от напора ветра и площади лопастей, на которые воздействует ветер. Как правило, работа установки начинается при скорости ветра 2 м/с, а максимальная эффективность наступает при 10-12 м/с.

Из всех предлагаемых формул рекомендуется воспользоваться наиболее простой. Для определения мощности установки необходимо площадь винта умножить на коэффициент 0,6. Полученное значение вновь умножается на скорость ветра, возведенную в третью степень. Окончательный результат сравнивается с потенциальными потребностями. Если мощности достаточно, то можно приступать к монтажу установки. Если же потребности не обеспечиваются, в этом случае можно воспользоваться несколькими ветрогенераторами малой мощности или гибридной установкой, в состав которой входят солнечные батареи.

В большинстве частных домов среднемесячное потребление электроэнергии составляет 360 квт, при средней нагрузке 0,5 квт и пиковой – 5 квт. Таким образом, потребуется ветрогенератор, мощностью 5 квт, способный потянуть имеющуюся нагрузку. Если же потребление будет превышать нормативное значение или ветер будет стабильно слабым, в этих условиях установка не сможет нормально работать.

Главные плюсы стандартных решений

В информационном поле имеется большое количество рекомендаций по разработке моделей разной мощности, с учетом предполагаемых затрат, окупаемости и планируемой нагрузки.

Фирменная ветросиловая установка среднего мощностного ценового ассортимента при номинальной скорости ветра 5-6 м/сек, вырабатывает за год до 250 киловатт бесплатной энергии.

Если создать вертикальный ветрогенератор самостоятельно, в том числе из подручных материалов, средств потребуется в несколько раз меньше, что положительно скажется на окупаемости проекта в целом.

С другой стороны, желание реализовать масштабный проект строительства мощного ветрогенератора для обогрева дома и работы энергоемкой бытовой техники, потребует значительных затрат. Давайте разбираться.

Классификация ветровых электростанций для частного дома

Агрегат, преобразующий кинетическую энергию направленного потока воздуха (ветра) сначала в механическую энергию вращающегося ротора, а затем в электрическую энергию, имеет несколько названий – «ветрогенератор», «ветроэлектрическая установка» (ВЭУ), бытовое название – «ветряк». Их классификация предлагает три категории – промышленные для работы на производственных предприятиях; коммерческие, вырабатывающие электричество на продажу; бытовые для индивидуального использования.

В зависимости от расположения оси основного ротора в классификации имеются два типа устройств – вертикальный и горизонтальный. В устройствах вертикального типа ось турбины расположена вертикально по отношению к плоскости земли. Она может работать при небольшом ветре.

ФОТО: tcip.ruВетрогенераторы вертикального типа с ротором Савониуса

ФОТО: tcip.ruВетряк с многолопастным ротором

У машин горизонтального типа ось ротора вращается параллельно поверхности земли. Такие ветрогенераторы имеют большую мощность преобразования энергии ветра в электрический ток. Их предшественники электричество не вырабатывали, но мололи муку, качали воду и делали много других полезных дел.

ФОТО: YouTube.comПредшественник ветрогенераторов

ФОТО: sovet-ingenera.comВариант реализации ветряного двигателя горизонтального типаФОТО: YouTube.comСовременная модель ветрогенератора горизонтального типа

Ветрогенератор является отличным решением задачи обеспечения загородного дома электроэнергией. В некоторых ситуациях другого решения и не существует.

Виды лопастей

В зависимости от типа ветрового генератора, вид лопастей используемых в каждом конкретном случае, может меняться, но основные конструкции соответствуют следующим типам.

1.Крыльчатого вида – используются в установка с горизонтальной и вертикальной осью вращения и могут изготавливаться из жестких материалов.

2.Парусного вида, могут быть крыльчатой формы и изготавливаться с применением мягких материалов:

3.Плоские – в виде лопастей мельницы, объединяют в себе оба выше приведенных вида, и могут быть изготовлены из легкого и прочного материала (фанера, пластик и т.д.).

Выбор материала

Для изготовления лопастей используются различные материалы, главными требованиями, предъявляемые к ним, являются следующие:

  • Прочность – способность выдерживать постоянные нагрузки, обусловленные воздействием ветровых потоков;
  • Малый вес – увеличивает срок службы узлов и механизмов аппарата (подшипники, растяжки и т.д.);
  • Стойкость по отношению к атмосферным явлениям (осадки, солнечный свет, температура окружающего воздуха).

Всем, выше перечисленными требованиям, соответствуют: стекловолокно, композитные материалы, пластик и легкие металлы (алюминий, титан и прочие).

Выбор материала осуществляет производитель, в соответствии с экономической целесообразностью, наличием материала на соответствующем рынке, а также трудоемкости его обработки в процессе выполнения работ.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка — крыльчатка. Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. Лопасти принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием — чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Как рассчитать лопасти?

Вычислить диаметр ветряка для определенной мощности можно следующим образом:

  1. Окружность пропеллера ветрогенератора с определенной мощностью, малыми оборотами и силой ветра, при которых происходит подача нужного напряжения, числом лопастей внести в квадрат.
  2. Высчитать площадь данного квадрата.
  3. Разделить площадь получившегося квадрата на мощность конструкции в ватах.
  4. Перемножить результат с требуемой мощностью в ватах.
  5. Под этот результат нужно подбирать площадь квадрата, варьируя размеры квадрата до тех пор, пока размер квадрата не достигнет четырех.
  6. В этот квадрат вписать окружность пропеллера ветрогенератора.

После этого нетрудно будет узнать другие показатели, например, диаметр.

Таким же способом можно рассчитать размеры лопастей.

Расчет максимально приемлемой формы лопастей достаточно мудреный, кустарному мастеру сложно его выполнить, поэтому можно использовать готовые шаблоны, созданные узкими специалистами.

Шаблон лопасти из ПВХ трубы 160 мм в диаметре:

Шаблон лопасти из алюминия:

Можно попробовать самостоятельно определить показатели лопастей ветряного устройства.

Быстроходность ветряного колеса являет собой соотношение круговой скорости края лопасти и скорости ветра, ее можно вычислить по формуле:

На мощность ветряного двигателя оказывают влияние диаметр колеса, форма лопастей, расположение их относительно потока воздуха, скорости ветра.

Ее можно найти по формуле:

При использовании лопастей обтекаемой формы коэффициент использования ветра не выше 0,5. При слабо обтекаемых лопастях – 0,3.

Разновидности и модификации вертикальных ветряков

Ортогональный ветрогенератор оборудован несколькими лопастями, расположенными на определенном расстоянии параллельно оси вращения. Эти ветряки известны также под названием ротора Дарье. Данные агрегаты зарекомендовали себя, как наиболее эффективные и функциональные.

Вращение лопастей обеспечивается их крылообразной формой, создающей необходимую подъемную силу. Однако, нормальная работоспособность устройства требует приложения значительных усилий, поэтому производительность генератора можно увеличить путем установки дополнительных статических экранов. В качестве недостатков следует отметить излишний шум, высокие динамические нагрузки (вибрация), которые нередко приводят к преждевременному износу опорных узлов и выходу из строя подшипников.

Существуют ветроустановки с ротором Савониуса, наиболее подходящие для бытовых условий. Ветровое колесо состоит из нескольких полуцилиндров, вращающихся непрерывно вокруг своей оси. Вращение осуществляется всегда в одну и ту же сторону и не зависит от направления ветра.

Минусом таких установок является раскачивание конструкции под действием ветра. За счет этого в оси создается напряжение и подшипник вращения ротора выходит из строя. Кроме того, вращение не может начаться самостоятельно, если в ветрогенераторе установлено всего две или три лопасти. В связи с этим, на оси рекомендуется закреплять два ротора под углом 90 градусов относительно друг друга.

Вертикальный многолопастный ветрогенератор относится к наиболее функциональным устройствам этого модельного ряда. Он обладает высокой производительностью при незначительной нагрузке на несущие элементы.

Внутренняя часть конструкции состоит из дополнительных статичных лопастей, размещенных в один ряд. Они сжимают воздушный поток и регулируют его направление, увеличивая, тем самым, эффективность работы ротора. Основным недостатком считается высокая цена в связи с большим количеством деталей и элементов.

Выбор вида лопасти

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки — создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки
  • парусные

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Нюансы балансировки и эксплуатации ветрогенератора

Чтобы повысить эффективность работы устройства, необходимо выполнить балансировку лопастей. Ее осуществляют в помещении, огражденном от сквозняков и ветра. Детали собирают в полноценную конструкцию и ставят в рабочем виде, следя за тем, чтобы ось была строго горизонтальной, линию проверяют по уровню. Перпендикулярно линии земли и оси выставляют плоскость вращения винта, так она получается горизонтальной.

Обездвиженный винт следует повернуть на 360°столько раз, сколько в нем предусмотрено лопастей. Правильно сбалансированное устройство в идеале останется неподвижным, здесь не приемлемы отклонения даже на градус. В тех случаях, когда лопасть поворачивается под влиянием собственного веса, ее подправляют с одной стороны, чтобы ликвидировать отклонение от оси. Процедуру повторяют до тех пор, пока конструкция не будет сохранять неподвижность во всех положениях

Чтобы результат испытаний был корректным, важно устранить фактор ветра

Все части должны вертеться в рамках одной плоскости. Чтобы проверить это условие, с обеих сторон винта устанавливают ограничивающие контрольные пластины на отдалении в 2 мм, при вращении изделие не должно их касаться.

Эксплуатация ветрогенератора подразумевает сборку схемы, способной аккумулировать переработанную энергию для ее сохранения и дальнейшей передачи конечному потребителю.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Как рассчитать правильно

На КПД ветрового генератора оказывает значительное влияние аэродинамические характеристики устанавливаемых на него лопастей, поэтому перед их изготовлением, производятся специальные расчеты. В результате проведения таких расчетов, изделия проверяются на соответствие полученных результатов требуемым параметрам и прочим требованиям, предъявляемым к ним.

Ветер оказывает воздействие на лопасти генератора и эта сила, или иными словами – напор, действует по направлению воздушного потока. В свою очередь, перпендикулярно к силе напора действует подъемная сила, именно которая и работает в ветровых генераторах с горизонтальной осью вращения (показано на ниже приведенной схеме).

При расчете геометрических размеров лопасти определяется ширина ее хорды и угол ее установки, на схеме β, на всей протяженности элемента устройства.

При проведении расчетов используется метод конечных элементов, суть которого заключается в том, что лопасть рассматривается как совокупность отдельных элементов, входящих в ее состав.

Сила напора ветровых потоков направлена против движения лопасти (на схеме названа «истинным ветром») и на диаграмме разложена на вектора — «скорость ветра» и «окружная скорость». Окружная скорость обеспечивает движение лопастей в плоскости вращения, при этом подъемная сила оказывает воздействие именно в этом направлении.

Сила напора и подъемная сила, определяют производительность ветрового генератора (формула приведена в разделе «Основные характеристики») и зависят от коэффициента подъемной силы, а также коэффициента лобового сопротивления. Кроме этого, данные коэффициенты, находятся в прямой зависимости от геометрического профиля лопасти и угла между линией ее хорды и направлением воздушного потока.

Линия хорды– самая длинная линия при рассмотрении ее сечения, от носка лопасти до ее задней кромки.

Угол между линией хорды и направлением воздушного потока (набегающий поток) называется углом атаки (угол α).

Коэффициенты подъемной силы и лобового сопротивления определены экспериментальным путем и занесены в специальные журналы (атласы). График зависимости подъемной силы от угла атаки (формы лопасти), выглядит следующим образом:

Наилучшие аэродинамические показатели имеют подобные элементы, обладающие углом α (углом атаки) равным значению – 5.

Еще одним важным параметром, при расположении элементов, является угол их установки (угол β), который определяется по формуле:

где:

R – радиус наружного круга вращения;

r – радиус вращения, без учета комля и и прикомлевой части;

Z – быстроходность кончика данного элемента устройства.

Ширина лопасти (размер «b») это также важный параметр, требующий соответствующего расчета

Наиболее важной частью является наружная, что обусловлено кольцом ветра и площадью охвата, с которым эта часть устройства работает

Расчет выполняется по формуле:

где:

R – наружный радиус вращения;

r – внутренний радиус вращения, без учета комля и и прикомлевой части;

Z – быстроходность кончика.

i – количество лопастей.

Из данной формулы видно, что:

  • Ширина обратно пропорциональна внутреннему радиусу ее вращения, и что, в свою очередь говорит о том, что наиболее оптимальной формой, является форма треугольника;
  • Ветровой генератор с малым количеством лопастей должен иметь более широкие лопасти;
  • Увеличение быстроходности снижает их ширину.

Быстроходность с показателем «5», является наиболее оптимальной, что позволяет снизить потери установки при максимальном количестве лопастей. На приведенном ниже рисунке, указано, как количество однотипных элементов, установленных на ветровом генераторе, влияет на его быстроходность:

Высокая быстроходность позволяет увеличить КПД ветровых генераторов, при этом негативными факторами, при эксплуатации подобных устройств, будут:

  • Повышенный уровень производимого шума;
  • Вибрация, при использовании одной или двух лопастей;
  • Повышенная эрозия кромок;
  • Трудности старта при малых потоках ветра.

Для снижения уровня шума кончики лопастей делают заостренной формы, а для облегчения старта, основания изготавливаются несколько шире, чем размер «b».

Пример расчета лопастей из 160-й трубы для данного генератора

быстроходность

Самый лучший результат я получил из 160-й трубы при диаметре 2,2м и быстроходности Z3,4 — лопастей 6шт, но такой диаметр винта из трубы 160мм лучше не делать, слишком тонкие и хлипкие лопасти получатся. При 3м/с номинальные обороты винта составили 84об/м и мощность винта 25ватт, то-есть примерно подходит. Надо конечно с запасом на КПД генератора, но 160-я труба и так тонкая и скорее всего уже при 7м/с будет наблюдаться флаттер. Но для примера пойдет

Теперь если изменять скорость ветра в таблице, то видно что мощность винта и его обороты будут примерно совпадать с параметрами винта, что нам и требуется, так-как важно чтобы винт был не перегружен и не недогружен — иначе пойдет вразнос на большом ветре.
>

Так при разном ветре я получил такие данные винта. Ниже на скриншоте данные винта при 3м/с, максимальная мощность винта (КИЭВ) при быстроходности Z3,4 Обороты и мощность при этом примерно совпадают с мощностью генератора при этих оборотах

Обороты генератора 100об/м- 2 Ампер 30 ватт
>

Далее вводим скорость 5м/с, это как видно на скриншоте 141об/м винта и мощность на валу винта 124 ватта, тоже примерно совпадает с генератором. Обороты генератора 150об/м — 8 Ампер 120 ватт
>

При 7м/с винт начинает по мощности обходить генератор и естественно недогруженный набирает большие обороты, по этому быстроходность я поднял до Z4 , получилось тоже примерное совпадение по мощности и оборотам с генератором. Обороты генератора 200об/м -14 Ампер 270 ватт
>

При 10м/с винт стал гораздо мощнее генератора при номинальной быстроходности так-как мало-оборотистый и не может раскрутить генератор быстрее. Так при Z4 мощность винта 991ватт, а обороты всего 332об/м. Обороты генератора 300об/м — 26 Ампер 450 ватт. Но недогруженный генератор позволяет раскрутится винту до быстроходности Z5 и выше, при этом КИЭВ винта падает, а следовательно и мощность, но при этом возрастают обороты, по этому получилось так что винт раскрутит генератор немного больше, но сам при этом потеряет в мощности и где то наступит баланс. Данные при этом примерно совпадут с генератором, но винт явно по мощности обгоняет генератор, по-этому при этом ветре пора делать защиту уводом винта из под ветра.
>

Так мы подогнали винт из ПВХ трубы диаметром 160мм под генератор. Сразу скажу что именно шести-лопастной винт такой быстроходности оказался самым подходящим. А так можно считать винт любого диаметра и количества лопастей. Просто трех-лопастной винт диаметром 2,3м для этого генератора оказался слишком скоростным и он не набрал бы обороты для своего максимального КИЭВ, так-как генератор сразу бы его начал тормозить.

По этому увеличением количества лопастей я понизил обороты винта и сохранил его мощность. Так винт получился подходящим под генератор, но 160-я труба внесла свои ограничения, в частности и так диаметр слишком большой и на ветру от 7м/с винт с хлипкими и тонкими лопастями скорее всего получит флаттер, и будет рокотать как взлетающий вертолет. Да и этим винтом мы снимаем с генератора грубо говоря при ветре 10м/с всего ватт 600-700, а можно в два раза больше, если поднять быстроходность винта и немного увеличить его диаметр.

Ниже скриншот с вкладки «Геометрия лопасти». Это размеры для вырезания лопасти из трубы

>

Варианты форм лопастей

При изготовлении лопастей для ветрогенератора нужно учитывать, что эффективность ветряка будет зависеть от следующих их характеристик:

Данные параметры очень важны, если хочется сделать лопасти своими руками. Ошибочно полагать, что для увеличения количества перерабатываемой ветровой энергии достаточно увеличить число крыльев на винте. Здесь, напротив, наблюдается снижение эффективности механизма, так как каждый отдельный сегмент при движении вынужден преодолевать неизбежное сопротивление воздуха. Поэтому для выполнения одного оборота винтом с большим количеством лопастей необходимо увеличение силы ветра.

Однолопастные устройства зарекомендовали себя как самые продуктивные, но их довольно сложно самостоятельно сконструировать и сбалансировать. При высоком КПД конструкция отличается крайней ненадежностью, поэтому для тех, кто собирает устройство своими руками, будет удобна трехлопастная модель.

В домашних условиях принято выполнять лопасти крыльчатого или парусного типа. Последние выглядят как простые широкие полосы по аналогии с ветряной мельницей. Они малоэффективны, КПД варьируется в пределах 10-12%.

Крыльчатые лопасти функционируют по принципам аэродинамики, благодаря которым осуществляется перемещение самолетов. Подобный винт вращается быстрее, его легче привести в движение. Благодаря обтеканию воздухом уменьшается сопротивление. С одного края изделие имеет характерное утолщение, напротив наблюдается пологий спуск. Здесь КПД составляет 30-35%.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм2 и 4 мм2;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов

На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно

При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм2, длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм2. Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм2.

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, охранную сигнализацию, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.