Регулятор тока

Содержание

Расходы на изготовление зарядного

  • корпус и трансформатор уже имелись
  • мостовой выпрямитель 50A — 300 руб.
  • радиатор от компьютера нерабочего
  • переключатель тока зарядки — 400 руб.
  • автоматический предохранитель — 200 руб.
  • выключатель питания — 50 руб.
  • амперметр — 400 руб.
  • вольтметр — 300 руб.

Толстые провода, винты, гайки и прочая мелочь имелись в мастерской — ее сложно подсчитать. Всего затраты составляют намного больше 2000 рублей, за которые вы уже можете купить готовый зарядный выпрямитель в магазине, но где там будет мощность и качество?

В качестве выпрямителя — квадратный диодный мост KBPC5010, но вы можете подключить 4 MBR2545 (2x25A 45V) (параллельно) в качестве одного диода, что увеличит их максимальный ток.

Передняя панель зарядки включает амперметр, вольтметр, селекторный переключатель зарядного тока, выключатель питания и предохранитель на стороне постоянного тока (тип «S», B16).

Радиатор выпрямительного диодного моста выступает сзади корпуса, там же есть предохранитель на первичке трансформатора и силовой кабель на сеть 220 В. Внутри постарались избегать пайки соединений малоустойчивых к ударам и которые труднее ремонтировать в полевых условиях.

Чтобы регулировать ток заряда, использовался на первичной стороне трансформатора популярный и дешевый диммер для домашних ламп. Конечно, на вторичной стороне есть диоды и амперметр. Диммер держит нагрузку 600 Вт, в зависимости от модели, что достаточно для управления трансформатором.

Буфер

После рассмотрения стабилизаторов цепей накала и высоковольтного стабилизатора, я предлагаю вашему вниманию схему простого высоковольтного буфера:

Его функция в обеспечении постоянного выходного сопротивления и подавление пульсация и помех по питанию. Если его подключить после обычного стабилизатора, то все негативные факторы от обратной связи в источнике питания можно существенно снизить.

Выходное сопротивление такого буфера обратно пропорционально крутизне транзистора и получается достаточно низким. Оно также постоянно в звуковом диапазоне частот.

Большую роль для качества звучания играет выбор конденсаторов!!!

Кстати, я обнаружил, что параллельное соединение конденсаторов не добавляет качества звучания. К примеру, один конденсатор на 20 мкФ звучит лучше, чем параллельное соединение двух конденсаторов на 10 мкФ того же производителя.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.

Принципы фазового регулирования позволяют создать не только регулятор тока и напряжения для зарядного устройства, но и схемы стабилизации, регулирования, а также плавного пуска. В последнем случае напряжение повышается постепенно, от нулевой отметки до максимального значения.

На основе физических свойств тиристоров была создана классическая схема регулятора тока. В случае применения охладителей для диодов и тиристора, полученный регулятор сможет отдавать в нагрузку до 10 А. Таким образом, при напряжении 220 вольт появляется возможность регулировки напряжения на нагрузке, мощностью 2,2 кВт.

Подобные устройства состоят всего из двух силовых компонентов – тиристора и диодного моста, рассчитанных на ток 10 А и напряжение 400 В. Диодный мост осуществляет превращение переменного напряжения в однополярное пульсирующее напряжение. Фазовая регулировка полупериодов выполняется с помощью тиристора.

Для параметрического стабилизатора, ограничивающего напряжение, используется два резистора и стабилитрон. Это напряжение подается на систему управления и составляет 15 вольт. Резисторы включаются последовательно, увеличивая тем самым пробивное напряжение и рассеиваемую мощность. На основании самых простых деталей можно легко изготовить самодельные регуляторы тока, схема которых будет довольно простой. В качестве конкретного примера стоит подробнее рассмотреть тиристорный регулятор сварочного тока.

https://youtube.com/watch?v=Ap6_c2wTe7M

Замер напряжения для сварки

https://youtube.com/watch?v=CY19cUIkh00

После изготовления и настройки устройства регулирования, его можно применять в работе. При этом необходим еще одно устройство, которое будет делать замеры напряжения для сварки. Жаль, но не будет возможности применять домашние амперметры.

Они не могут применяться в работе с полуавтоматическими инверторами мощностью больше 250 А. Поэтому, лучше применять клещи, измеряющие напряжение. Это достаточно дешевый и простой способ определить силу тока, управлять клещами просто и понятно.

Такое приспособление в верхней зоне оборудования прикрепляются к фидеру и меряют напряжение. На каркасе оборудования есть тумблер предельного значения тока.

Исходя из модели и стоимости, изготовители выпускают клещи для измерения напряжения. Они могут работать при 150-550 А. Необходимо подбирать устройство с идентичными параметрами инвертора.

Клещи, измеряющие ток — хороший вариант, когда надо срочно померять показатели напряжения, что не повлияет на цепь и не требует подключать к нему вспомогательные элементы.

Есть одно отрицательное качество: они вообще не подходят для измерения значений при постоянном токе. Это происходит по причине, что постоянный ток не делает переменное электромагнитное поле, и устройство просто не распознает его.

При работе с переменным током, такое устройство-регулятор справляется отлично.

Есть еще один метод, измеряющий напряжение, он радикальнее. В цепь полуавтоматического инвертора присоединить индустриальный измеритель ампер, который может измерить высокие показатели напряжения.

Это недорогой и действенный метод определения значений тока, но применение амперметра при работе инвертором имеет свои тонкости.

В цепь присоединяют не сам прибор измерения ампер, а его варистор или проводник, одновременно с этим, указатель в виде стрелок подключается к варистору или проводнику.

При отклонении от очередности, устройство может не работать или еще хуже — выйти из строя.

Это интересно: Баластник для сварочного аппарата своими руками — основательный взгляд на вопрос

Печатные платы

Только шелкография: pcb_current_source_silk.pdf Только дорожки: pcb_current_source_solder.pdf Дорожки и шелкография: pcb_current_source_solder_silk.pdf Только шелкография: pcb_current_source_silk.pdfТолько дорожки: pcb_current_source_improved_solder.pdfДорожки и шелкография: pcb_current_source_improved_solder_silk.pdf

Всё уместилось на маленьком кусочке (3 на 2 см) фольгированного текстолита, тепло отводится путём крепления всей платы на кусок алюминия винтами, спроектирована она с расчётом на крепёж M2, чтобы легко и надёжно закрепить её или попросту приклеить к теплоотводу теплопроводящим клеем (Stars 922). При необходимости её можно легко уменьшить почти в два раза раза два.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот. При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Регулировка в сварочных инверторах

Такие агрегаты характеризуются лучшими рабочими параметрами, компактными размерами. Силу тока в этих аппаратах регулируют, меняя частоту генератора. При снижении этого параметра уменьшается передаваемая обмотке мощность.

Ручка регулятора располагается на передней панели аппарата. Вращением ручки изменяют параметры работы генератора. В результате сварочная дуга приобретает нужные характеристики. Инверторные аппараты настраивают так же, как ручные.

Помимо регулировочной ручки, управляющий блок инвертора снабжается дополнительными средствами защиты и настройки. Они помогают поддерживать устойчивую дугу, делают сварку безопасной.


Устройство инверторного сварочного аппарата.

Сборка устройства

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Как сделать диагностику без снятия?

Не рекомендуется проводить такую проверку, так как нет возможности оценить состояние щеточного узла. Но случаи бывают разные, поэтому даже такая диагностика может дать свои плоды. Для работы вам потребуется мультиметр или, если такового нет, лампа накаливания. Для вас главное – это провести замер напряжения в бортовой сети автомобиля, определить, нет ли скачков. Но их можно заметить и при езде. Например, мигание света при изменении оборотов коленчатого вала двигателя.

Но точнее окажутся измерения, проведенные с использованием мультиметра или вольтметра с растянутой шкалой. Заведите двигатель и включите ближний свет. Подключите мультиметр к клеммам аккумуляторной батареи. Напряжение не должно превышать 14,8 Вольт. Но и нельзя, чтобы оно опускалось ниже 12. Если оно находится не в дозволенном интервале, то имеется поломка регулятора напряжения. Не исключено, что нарушены контакты в местах соединения прибора с генератором, либо окислены контакты проводов.

Основные характеристики линейного стабилизатора напряжения LM317

В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.

Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.

Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.

Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:

  • минимальное выходное напряжение – 1,25 В;
  • минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;

Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).

Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.

Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.

REGIN PULSER

Симисторный регулятор PULSER используется для настройки электрообогревателей (однофазных и двухфазных). Крепится на вертикальную поверхность, подключается последовательно между аппаратом и сетью питания. PULSER оборудован входом для термодатчика и терморегулятора.

Управление осуществляется путём включения и выключения отопительного прибора на пропорциональной основе (30 секунд работает, 30 секунд отключён). Так, экономится электроэнергия, а температура в помещении остаётся на одном уровне. Распределение нагрузки осуществляется симистром (полупроводниковым прибором). Это обеспечивает дополнительную надёжность, из-за отсутствия механических элементов. Переключение производится при нулевом напряжение, это мешает образованию электромагнитных помех.

Если в помещении температура быстро меняется, то регулятор начинает работать в специальном режиме, с точкой возврата к исходным параметрам через 6 минут. В ночной период можно выставить специальную температуру. При чрезмерной мощности электрообогревателя, нагрузка разделяется на несколько приборов с управлением от одного регулятора.

Технические характеристики

  • Электросеть — однофазная или двухфазная, 200/415 В, 50-60 Гц.
  • Ток — минимальный — 1 А, максимальный — 16 А.
  • Окружающая среда — не больше 30°C.
  • Влажность — не больше 90%.
  • Защита — IP20.
  • Размеры — 94х150х43 мм.
  • Диапазон — от 0 до 30 °C.
  • Количество термодатчиков — 1.

Устройство соответствует европейским стандартам EN 50081-1.

Назначение и принцип работы

С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.

Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.

Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.

Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.

На основе симистора

Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:

Структурно прибор можно разделить на два блока:

  • Силовой ключ, в роли которого используется симистор.
  • Узел создания управляющих импульсов на основе симметричного динистора.

С помощью резисторов R1-R2 создан делитель напряжения

Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3

Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс

Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.

На базе тиристора

Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.

Принцип работы тиристорного прибора следующий:

  • Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
  • После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
  • При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.

Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.

Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.

Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.