Аналог мощного стабилитрона как тестовая нагрузка для проверки зарядных устройств автомобильных аккумуляторов

Простой стабилизатор тока на транзисторе

Параметры компонентов и рабочие характеристики схемы:

  • R1 выбирают 1-15 Ом;
  • R2 – от 150 до 250 Ом;
  • D1 – стабилитрон или резистор подходящего номинала;
  • Q1 – КТ 818 или аналог;
  • напряжение источника питания – от 8 до 40 V;
  • ток на выходе – 0,5-4,5А.

Пояснения:

  • R2 и D2 формируют стандартный делитель напряжения;
  • изменением потенциала на базе корректируется ток в цепи коллектора;
  • при подключении мощной нагрузки R1 сильно нагревается;
  • для точной регулировки выходных параметров устанавливают переменное сопротивление R2 (изменяют порог насыщения на соответствующем полупроводниковом переходе);
  • при необходимости увеличивают выходной ток с применением составного транзистора.

Если расчет сделан точно, в рабочем диапазоне стабилизация тока выполняется с минимальными потерями. Простую схему несложно изготовить собственными руками даже без предыдущего опыта сборки.

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

↑ Первый вариант расчета параметрического стабилизатора [2, 4, 5]

проведем для случая, когда напряжение питания нестабильно, а сопротивление нагрузки относительно постоянно.

Исходными данными для расчета служат: Uвых, Iн, ΔIн, Uвх, ΔUвх.

Для получения требуемого выходного напряжения по справочнику выбираем стабилитрон с параметрами: Uст= Uвых, Iст max, Iст min, rд.

Требуемоемое входное напряжение рассчитываем исходя из крайних оптимальных коэффициентов передачи стабилизатора Nст=1,4…2, который также может быть выбран пользователем в любом необходимом диапазоне Nст:

Uвх= Nст Uст.

Далее выбираем рабочий ток через стабилитрон Iст р примерно из середины диапазона допустимых значений, убедившись при этом, что Iст р> Iн:

Iст р=0,5(Iст min+Iст max)> Iн.

Вычислим сопротивление балластного резистора:

R0=(Uвх- Uст)/(Iст р+ Iн).

Рассчитаем с двукратным запасом мощность балластного резистора:

Po=2(Iст р+ Iн)2R0.

Проверим выбранный режим работы стабилизатора. Расчет произведен верно, если при одновременном изменении Uвх на величину ΔUвх и Iн на величину ΔIн ток стабилитрона не выходит за пределы Iст max и Iст min: Iст р max=(Uвх+ ΔUвх- Uст)/(R0-(Iн- ΔIн))<0,8 Iст max; Iст р min=(Uвх- Uст)/(R0-(Iн+ ΔIн))>1,2 Iст min.

Здесь учтен запас в 20%, необходимый для надежной работы стабилитрона. Принятое при расчете наибольшее рабочее значение тока через стабилитрон не более 0,8 от справочного Iст max вызвано соображениями эксплуатационной надежности устройства, чтобы мощность, рассеиваемая на стабилитроне была ниже предельной. Для гарантированного обеспечения требуемого коэффициента стабилизации минимальное рабочее значение тока через стабилитрон Iст р min принято в расчете в 1,2 раза большим, чем Iст min.

Если полученные значения токов Iст р max и Iст р min выходят за пределы допустимых значений, то необходимо выбрать другое значение Iст р, изменить сопротивление R0 или заменить стабилитрон.

Также вычислим параметры стабилизатора, определяющие его качество и эффективность – коэффициент стабилизации Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R0/(rдNст), коэффициент полезного действия КПД=Uст Iн /(Uвх (Iн + Iст))=1/(Nст(1+ Iст/Iн)), и коэффициент фильтрации Kф=Kст/КПД.

↑ Пример расчета №1

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток в нагрузке Iн=10 мА; изменение тока в нагрузке ΔIн=2 мА; изменение входного напряжения ΔUвх=10%. Выберем стабилитрон типа Д814Б, для которого Uст= Uн=9 В; rд=10 Ом; Iст max=36 мА; Iст min=3 мА.

Заносим приведенную выше информацию в соответствующие ячейки исходных данных (выделены светло-голубой заливкой) листа «Первый вариант расчета» таблицы Microsoft Excel «Расчет и анализ работы параметрического стабилизатора напряжения.xlsx» и тут же получаем результаты вычислений в расчетных ячейках, выделенных светло-коричневой заливкой:

входное напряжение Uвх=15,0 В; сопротивление балластного резистора R0=240 Ом, мощность балластного резистора с двукратным запасом Po=0,3 Вт; Kст=15,0, КПД=24%, Kф=62,5 (см. рис. 2).

Рис. 2. Печать с экрана примера расчета №1

Выбираем резистор сопротивлением 240 Ом мощностью 0,5 Вт.

Предположим, что на входе стабилизатора имеются пульсации переменного напряжения амплитудой Uп вх=0,1 В=100 мВ. Амплитуда пульсаций на выходе стабилизатора составит Uп ст= Uп вх/Kф=100/62,5=1,6 мВ.

↑ Пример расчета №2

Произведем расчет параметрического стабилизатора для усилителя «Green Lanzar» на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом для питающих напряжений Uп=Uвх=±25 В; ±35 В и ±45 В. Расчет выполним для параметрического стабилизатора положительной полярности (R5, VD1, C2), поскольку другой стабилизатор, отрицательной полярности (R6, VD2, C4) отличается только направлением включения стабилитрона.

Подготовим исходные данные: стабилизированное напряжение на нагрузке Uн=12 В, ток в нагрузке Iн=(12-0,5)/R2=11,5/10=1,15 мА, ΔIн=0,115 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон BZX55C12, имеющий следующие параметры: Uст= Uн=12 В; rд=20 Ом; Iст max=32 мА; Iст min=5 мА.

Результаты вычислений показаны на рис. 3; для Uп=±25 В R5=R6=1,3 кОм (0,25 Вт); для Uп=±35 В R5=R6=2,4 кОм (0,5 Вт); для Uп=±45 В R5=R6=3,6 кОм (1 Вт).

Рис. 3. Расчет параметрических стабилизаторов для усилителя «Green Lanzar»

Основные технические характеристики LM338

Простой регулируемый источник питания

Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый источник питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый источник питания на 15 ампер

Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Информация взята с joyta.ru

Купить Регулируемые стабилизаторы напряжения LM338 за $2.65

Стабилизатор тока на транзисторе

Однако, такой подход подойдет не во всех случаях (требуется высокое напряжение на источнике питания, при большой силе тока резистор будет изрядно нагреваться). Аналогичные проблемы есть и у простейших диодных стабилизаторов.

Наиболее логично управлять током с помощью транзисторов. На них мы и остановимся ниже. Такой подход выгоден не только с точки зрения экономии на стоимости составляющих элементов, но и с позиции тонкой настройки схемы под свои нужды (например, схемы на готовых микроконтроллерах не могут изменять выходных параметров в требуемом диапазоне, они работают только в фиксированных пределах, а значит, изменение под свои нужды будет затруднительным, так как необходимо применение дополнительных элементов для управления уровнем тока).

Применение стабилизаторов тока на транзисторе

Где может понадобиться стабильный ток? Чаще всего это схемы питания:

1. Светодиодов (автомобильные фары, ленты освещения, рекламные табло, новогодние гирлянды),

2. Паяльных станций,

3. Зарядных устройств (для бытовых аккумуляторов, автомобильных и т.п.),

4. И т.п.

Схема стабилизатора тока на одном транзисторе

Рис. 2. Схема стабилизатора тока на одном транзисторе

Логика работы очень проста:

1. Ток нивелируется высокоомным резистором R2 (около 200 Ом), а задающим является низкоомный резистор R1 (1-10 Ом).

2. Связка R2 D2 применяется в качестве делителя напряжения, только вместо второго резистора используется стабилитрон (он обеспечивает дополнительную стабилизацию управляющего тока на базе транзистора).

3. В нормальном режиме ток проходит на нагрузку практически без изменений.

4. При изменении тока на базе транзистора будет нивелироваться и выходной ток на катоде, он останется слабочувствительным к колебаниям на эмиттере. То есть, на нагрузку будет подаваться достаточная сила тока даже при колебаниях напряжения на источнике питания.

Сопротивление R1 может сильно нагреваться в процессе работы, поэтому этот элемент лучше всего выполнить из нескольких резисторов. Последние должны быть не чувствительны к температурному режиму работы. Именно R1 задает выходной ток, поэтому от его калибровки будут зависеть ключевые параметры всей схемы.

Сопротивление R2 может быть заменено переменным резистором для подстройки порога насыщения транзистора. Таким образом можно будет настроить уровень выходного тока.

Диод (стабилитрон) D1 может быть заменен сопротивлением.

В качестве биполярного транзистора можно использовать один КТ818 или связку из нескольких, соединенных по схеме составного транзистора.

Указанная схема подойдет для стабилизации токов в диапазоне 0.5-5 А при напряжении питания от 9 до 45 В.

Схема на двух транзисторах

Этот способ соединения транзисторов еще называют «токовое зеркало».

Схема выглядит следующим образом.

Рис. 3. Схема на двух транзисторах

По факту, здесь транзистор VT2 имеет соединенные между собой базу и коллектор, поэтому его функционал сопоставим с классическим диодом.

На деле же идентичность параметров обоих транзисторов позволяет лучше управлять (нивелировать) коллекторным током на основном элементе VT1. А в остальном логика работы аналогична предыдущей схеме (на одном транзисторе с диодным делением).

↑ Основные соотношения для расчета параметрического стабилизатора на стабилитроне [1 – 5]

На рис. 1 показана принципиальная схема параметрического стабилизатора: Uвх – входное нестабилизированное напряжение, Uвых=Uст – выходное стабилизированное напряжение, Iст – ток через стабилитрон, Iн – ток нагрузки, R0 – балластный (ограничительный, гасящий) резистор. Uвх=Uст+(Iн+Iст)R0=Uст+IR0, (1) I= Iн+Iст – ток, протекающий через балластный резистор R0.

Рис. 1. Схема параметрического стабилизатора напряжения на стабилитроне

Как видно из рис. 1, параметрический стабилизатор на кремниевом стабилитроне представляет собой делитель напряжения, состоящий из балластного резистора R0 с линейной Вольт — амперной характеристикой (ВАХ) и стабилитрона VD1, который можно рассматривать как резистор с резко нелинейной ВАХ.

При изменении напряжения Uвх изменяется ток через делитель, приводящий к изменению падения напряжения на резисторе R0, а напряжение на стабилитроне, следовательно, на нагрузке Rн практически не изменяется.

Малое изменение напряжения на нагрузке в диапазоне от Uст min до Uст max соответствует изменению тока через стабилитрон от Iст min до Iст max. Причем, минимальный ток через стабилитрон соответствует минимальному входному напряжению и максимальному току нагрузки, что достигается при сопротивлении балластного резистора

R0=(Uвх min-Uст min)/(Iн max+Iст min). (2)

В свою очередь, максимальный ток через стабилитрон будет протекать при минимальном токе нагрузки и максимальном входном напряжении.

Несложно найти условия работы стабилизатора:

ΔUвх=ΔUст+R0(ΔIст-ΔIн), (3) где ΔUвх=Uвх max-Uвх min, ΔUст= Uст max-Uст min, ΔIст=Iст max- Iст min, ΔIн= Iн max-Iн min.

Положим для упрощения ΔUст=0 и проанализируем выражение (3).

Диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилитрона, поскольку в этом случае правая часть выражения становится отрицательной, и схема не будет работать как стабилизатор напряжения.

Если изменение тока нагрузки незначительно, выражение для условия работы стабилизатора упрощается:

ΔUвх= ΔIстR0. (4)

КПД параметрического стабилизатора определяется из выражения:

КПД=Uст Iн /(Uвх (Iн + Iст)=1/(Nст(1+ Iст/Iн)), (5) где Nст=Uвх/Uст – коэффициент передачи стабилизатора; обычно Nст=1,4…2.

Из выражения (5) следует, что чем ниже коэффициент передачи стабилизатора и чем меньше отношение тока через стабилитрон к току нагрузки, тем выше КПД.

Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации:

Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R0Uст/rдUвх=R0/Nстrд=KфКПД, (6) где rд — динамическое сопротивление стабилитрона; Kф – коэффициент фильтрации.

Где используют релейные стабилизаторы

Если проанализировать все плюсы и минусы релейного стабилизатора, можно сделать вывод, что он сможет справится с большинством бытовых задач. Практически везде, где не требуется точности стабилизации, но при этом нужна высокая скорость — релейный стабилизатор просто незаменим.

В частности, релейные стабилизаторы активно приобретают для выравнивания напряжения в квартире или на даче, а также в гараже. Кроме того, практически любая бытовая техника, в которой есть мотор или нагревательный элемент, например, холодильник, стиральная или посудомоечная машина, электроинструмент прекрасно работают с недорогими и быстрыми релейными стабилизаторами.

Когда падения или наоборот скачки напряжения происходят не очень часто, но всё же случаются в течении дня, например, в садоводческом товариществе, где напряжение в сети, нередко, сильно зависит от того, что делают ваши соседи в данный момент, зависимости от этого оно может стремительно меняться, релейный стабилизатор оптимальное решение.

Если же у вас есть какое-то чувствительное даже к малейшим скачкам напряжения или параметрам электрического тока, а также к точности стабилизации оборудование, например, высококачественный усилитель звука, вам следует выбрать нормализатор другого типа.

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

https://youtube.com/watch?v=sZXeimSVux8

Выбор схемы включения

На практике применяют разные инженерные решения. В частности, для подключения светодиодных светильников производители предлагают импульсные источники питания. Эти устройства выполняют свои функции с помощью частотного преобразования и модуляции сигнала. Для управления ключом устанавливают микросхемы. Для дозированного накопления энергии используют дроссель.

Импульсный стабилизатор тока

Для упрощения в данной статье рассмотрена линейная стабилизация. Устройства, созданные по этой схеме, не создают сильные электромагнитные помехи. В этом – главное отличие от импульсных аналогов.

Схема на составном транзисторе

Увеличить выходной ток без увеличения тока через стабилитрон можно только увеличив h21э транзистора. Это можно сделать если вместо одного транзистора использовать два, включенных по составной схеме (рис.4). В такой схеме общий h21э будет примерно равен произведению h21э обоих транзисторов.

Рис. 4. Принципиальная схема стабилизатора напряжения на основе составного транзистора.

Транзистор VT1 берут маломощный, а VT2 на мощность и ток, соответствующий нагрузке. Все рассчитывается примерно так же, как и в схеме по рисунку 3. Но теперь у нас два кремниевых транзистора, поэтому выходное напряжение снизится не на 0,65V, а на 1,ЗV.

Это нужно учесть при выборе стабилитрона, — его напряжение стабилизации (при использовании кремниевых транзисторов) должно быть на 1,ЗV больше требуемого выходного напряжения.

К тому же появился резистор R2. Его назначение — подавлять реактивную составляющую транзистора VТ2, и обеспечивать надежную реакцию транзистора на изменение напряжения на его базе.

Величина этого сопротивления слишком уж существенного значения не имеет, но и за пределы разумного выходить не должна. Обычно его выбирают примерно в 5 раз больше сопротивления R1.

Иванов А. РК-11-17.