Тихая заводь: собираем систему водяного охлаждения для пк

Содержание

Тесты и общие впечатления от СЖО

Температура процессора

в простое (после прогрева) — 50-52

в стресс тесте — 55-60 (как бы вполне приемлимо)

в WOT на максимуме — 62с (вентиляторы на 100%, взлетаем)

Температура питания(как оказалось вот откуда ноги растут)

в стресс тесте — 65 (как бы вполне приемлимо)

в WOT на максимуме — 69 (вентиляторы на 100%, взлетаем)

По фото выше видно как радиатор питания закрыт со всех сторон и его практически ничего не обдувает! Это и стало первой ластачкой в проблеме охлаждения системника в общем!

Дальше я решил почитать тесты и обзоры вентиляторов для СЖО, как оказалось не все вентиляторы подходят для сот радиаторов СЖО. После получения новой инфы был куплен вентилятор для водянки

Результат такой же как и с 2мя DEEPCOOL UF120. На пару градусов упала температура на питании проца. Звук от системника не изменился, вентиляторы работают на пределе!

Отсюда вывод — изначально купив много лет назад Scythe Katana 3, я сделал нереально грамотный выбор! )) Но это не только по этому, далее расскажу!

Теперь я понял свою ошибку — СЖО подходит не для всех материнок и корпусов!

Далее я задался поиском куллера, который хоть как-то направлен в сторону радиатора питания проца, не долго думал выбрал Scythe Choten

Правда я заменил стоковый кулер и поставил Noiseblocker BlackSilentPro PL-PS, а стоковый от Scythe Choten поставил на выдув!

Виды водяного охлаждения

Производится множество моделей жидкостных охладителей для CPU, отличающихся мощностью и габаритами. В зависимости от особенностей конструкции различают следующие типы данных установок:

  1. Водяное охлаждение процессора внешнего типа – ватерблоки находятся в корпусе ПК, но сама установка вынесена наружу, представляя собой отдельный модуль. Плюсы такого выбора в ненадобности масштабных доработок и покупке нового более просторного корпуса. Минусы внешней СВО – низкая мобильность компьютера.
  2. Внутренняя СВО – большинство узлов системы монтируются внутри системных блоков. Плюсы такого варианта – высокая мобильность компьютера, внешний вид не страдает. Минусы варианта – при монтаже нужна обязательная модификация корпуса ПК.

Составляющие элементы

Чтобы охлаждение центрального процессора происходило быстро и эффективно, каждый куллер должен иметь следующие элементы:

  1. Теплообменник – данный элемент нагревается, вбирая в себя тепло центрального процессора. Перед новым использованием следует дождаться полного охлаждения теплообменника;
  2. Помпа для воды – резервуар для хранения жидкости;
  3. Несколько трубопроводов;
  4. Переходники между узлами и трубопроводами;
  5. Бачок для расширения– предназначен для того, чтобы обеспечить необходимое место для расширяющегося в процессе нагревания теплообменника;
  6. Наполняющий систему теплоноситель – элемент, который наполняет всю структуру жидкостью: дистиллированной водой или специализированной жидкостью для СВО;
  7. Ватерблоки – теплосъемники для тех элементов, которые выделяют тепло.

Примечание! Жидкостная система охлаждения малошумная по сравнению с вентиляторами. Некоторый шум все же присутствует, так как его коэффициент не может быть нулевым.

NZXT Kraken X62

  • Сокеты Intel: 1200, 1151, 1150, 1155, 1156, 1366, 2011, 2011-3, 2066
  • Сокеты AMD: TR4, AM4, FM2+, FM2, FM1, AM3+, AM3, AM2+, AM2
  • Рассеиваемая мощность (TDP): нет данных
  • Штатные вентиляторы: 140x140x25 мм – 2
  • Скорость вращения: 500-1800 об/мин
  • Уровень шума: до 38 дБ
  • Подсветка: RGB
  • Габариты радиатора: 315x143x30 мм
  • Габариты помпы: 80x80x52.9 мм

NZXT Kraken X62 относится к тем системам жидкостного охлаждения, которые не нуждаются в представлении: модель не только способна справиться даже с наиболее горячими актуальными процессорами Intel и AMD, но и перегоняет легендарный суперкулер Noctua NH-D15 даже на средних оборотах вентиляторов. Высокая эффективность помпы и грамотно спроектированный радиатор позволяют Kraken X62 приблизиться по производительности ко многим сборным СВО, поэтому нет ничего удивительного в том, что именно это решение было выбрано для нашей игровой конфигурации за 200 тысяч рублей. На российском рынке представлено немало жидкостных охладителей типа все-в-одном, имеющих безоговорочное превосходство над воздушными суперкулерами, и NZXT Kraken X62, несомненно, в их числе. Приятным, пусть и необязательным бонусом идет симпатичная подсветка водоблока. Хотите приобрести мощную и не создающую никаких проблем необслуживаемую СВО для охлаждения процессора с высоким тепловыделением? Kraken X62 – ваш выбор.

Виды водяного охлаждения

Производится множество моделей жидкостных охладителей для CPU, отличающихся мощностью и габаритами. В зависимости от особенностей конструкции различают следующие типы данных установок:

  1. Водяное охлаждение процессора внешнего типа – ватерблоки находятся в корпусе ПК, но сама установка вынесена наружу, представляя собой отдельный модуль. Плюсы такого выбора в ненадобности масштабных доработок и покупке нового более просторного корпуса. Минусы внешней СВО – низкая мобильность компьютера.

Внутренняя СВО – большинство узлов системы монтируются внутри системных блоков. Плюсы такого варианта – высокая мобильность компьютера, внешний вид не страдает. Минусы варианта – при монтаже нужна обязательная модификация корпуса ПК.

Небольшой FAQ по водяному охлаждению

Теплопроводность металлов и других веществ :

Ответы на вопросы уже решенные в этой ветке:

№ 1 Антифриз (Тосол) нужен: 1. Если в системе жидкостного охлаждения присутствует железо/чугун или коррозирующие металлы; 2. Если на систему (жидкость) попадают солнечные лучи или достаточное кол-во дневного света; 3. Если t жидкости в системе ниже 5’C. 4. Не рекомендуется добавление спирта водки Во всех других случаях ПРЕДПОЧТИТЕЛЬНЕЙ использовать дистиллированную/очищенную воду.

№ 3 Большая скорость жидкости не нужна. Она быстро заберет тепло в ватерблоке, это хорошо. Но она также не успеет толком охлаждаться в радиаторе, так как слишком быстро будет через него проходить. Физический закон обратим. Если вода быстро забирает тепло, то она отдает его с той же скоростью. Притом вода находится одинаковое время в ватерблоках и радиаторе независимо от расхода. Давайте рассмотрим это на примере. У нас имеется контур, где 5% жидкости находится в ватерблоке, 40% в радиаторе, а остальная жидкость — в шлангах, бачке и т.д. Помпа выключена, расход нулевой. Теперь включаем помпу и пусть она прокачивает через контур 300 л/ч. Все еще 5% воды находится в ватерблоке и 40% в радиаторе, и это соотношение не изменится никогда. Теперь пусть помпа начнет прокачивать через контур 600 л/ч вместо 300л/ч. Скорость жидкости увеличилось в 2 раза, она в 2 раза быстрее проходит через ватерблок и через радиатор, но скорость теплопередачи как физическая величина неизменна. Во втором случае вода хоть и течет в 2 раза быстрее, но и «кругов» по контуру сделает в 2 раза больше. Тем самым достигается равновесие. Расход в контуре на количество переносимого и рассеиваемого тепла не влияет. СВО рассеет столько тепла, сколько ей обеспечат процессор, видеокарта и т.д. Расход (но, не только он один) определит только конечную температуру «точек» охлаждения. Доплнение: Ламинарное течение (от лат. lamina — пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров.

Турбулентное течение (от лат. turbulentus — бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Применительно к нашей теме можно сказать, что отличия между этими двумя типами в том, что в «ламинарных» ватерблоках сопротивление току вода ниже, а значит его скорость выше. Это приводит к тому, что вода очень быстро проходит свой путь между входным и выходным штуцерами. Поэтому большая часть поверхности ватерблока омывается водой низкой температуры. В противовес этому достоинству есть и недостаток. Он кроется в том, что теплопроводность воды в отличии от её теплоемкости очень низкая и поток, который непосредственно соприкасается с поверхностью блока быстро нагревается и теплообмен между медью и водой прекращается. При этом нижние пограничные слои воды не успевают передать тепло верхним.

Турбулентный же поток является антиподом ламинарного, он за счет завихрений и перемешивания воды более равномерно распределяет тепло внутри потока, но его скорость ниже, чем у ламинарного за счет большего сопротивления внутренней структуры блока, создающего завихрения.

Поэтому очевидно, что для построение эффективного блока нужно найти «золотую середину».

Структура систем жидкостного охлаждения

Для многих не будет секретом, что СВО могут быть открытого (кастомные) и закрытого типа (готовые необслуживаемые решения для охлаждения конкретного типа комплектующих). И если с последними все понятно, то первая категория может быть построена по трем основным принципам:

Схема с параллельным подключением. Все узлы запитаны от одной помпы, которая гонит хладагент к радиатору с кулерами. Через решетку радиатора вода охлаждается и подходит к железу, с которых снимается тепловая энергия. Горячая жидкость возвращается в резервуар с помпой и процесс повторяется заново. Схема выглядит следующим образом.

Схема с последовательным подключением. Элементы также охлаждаются параллельно и очень эффективно, но для этого необходимо иметь мощную помпу и весьма оборотистые вертушки, которые смогли бы оперативно охлаждать хладагент в радиаторе. Схема прилагается.

Есть так называемые комбинированные или двухконтурные водянки.

NZXT KRAKEN X62

Приблизительно. $110 | £113

KRAKEN X62 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Большой centrepiece к вашему лидирующему строению, но не уровень представления вы могли предпологать дали эстетику.

  • Размер 280мм
  • Вентиляторы 2x PWM 140mm
  • Совместимость AM4, LGA 1151, LGA 2033, LGA 2066

$125.99

ВИД

Сеть N получает комиссионные от квалификационных покупок через Amazon Associates и другие программы.

Что нам нравится …

потрясающий дизайн отличная производительность

NZXT любит, чтобы его продукты выделялись из толпы, и Kraken X62 ничем не отличается. Этот коренастый 280-миллиметровый кулер имеет уникальный дизайн освещения бесконечного зеркала, который делает Kraken x62 невероятным центральным элементом сборки.

В целом, это самый потрясающий кулер из всей серии

NZXT имеет определенный талант к щедрым дизайнам, и вы не найдете много других кулеров, которые отвлекают внимание от яркой видеокарты так же, как Kraken x62. К сожалению, NZXT не смог перенести этот уровень детализации в свое приложение CAM, что оставило этот чиллер с посредственной производительностью

Если вы не боитесь пинать управление вентилятором обратно в BIOS, то это должен быть, по крайней мере, более тихий блок.

Опасность

Из трагического – перегрев принесет «смерть» вашей машине. Причем это может произойти несколькими способами. Если обратиться к физике, то за счет перегрева происходят необратимые и обратимые процессы.

Так, к необратимым относят химические явления. Перегрев либо резкий, либо длительный влияет на элементы, которые меняют свое молекулярное строение. После этого каким-либо образом спасти любимую видеокарту не удастся никак. Обратимые больше относятся к физическим процессам. В таком случае что-то плавится или рушится, соответственно, может быть заменено. Хотя последние случаи не всегда возможно исправить.

Как выбрать водяное охлаждение?

Существование разных моделей СВО разрешает приобрести установку в соответствии с заданными параметрами, которая оптимально подойдет для конкретного компьютера. Водяное охлаждение для процессора желательно подбирать с учетом следующих нюансов:

  1. Большее число вентиляторов помогает увеличивать эффективность системы, снизить скорость вращения.
  2. В корпусе должно хватать места под радиатор, шланги и кулеры.
  3. Длина шлангов должна соответствовать размерам корпуса.
  4. Подбирать мощность СВО в соответствии с требованиями по теплоотводу (величине TDP компьютера).
  5. Водоблок лучше приобретать из меди.
  6. Желательно наличие регулировки скорости вращения кулеров.
  7. Вентиляторы и помпа СВО, издающие шума более 40-ка дБ, будут вызывать дискомфорт.
  8. Дизайн – подсветка, теплоноситель с флуоресцирующими компонентами и прозрачные трубки важны исключительно при наличии прозрачной крышки корпуса.

Жидкость для водяного охлаждения

Применять в качестве хладагента простую воду непрактично и опасно. Трубки быстро загрязняются примесями, а в случае протечек крайне высокий риск замыкания. Антифриз является токсичным веществом и проводит электричество. Самый дешевый вариант – заправить водяное охлаждение ПК дистиллированной водой. Специалисты советуют не экспериментировать, а перейти к использованию готового теплоносителя от проверенных брендов.

Примеры качественного хладагента для водяного охлаждения на ПК:

  1. Fluid XP+ Ultra .

Feser One .

Mayhems Pastel Coolant .

Корпус под водяное охлаждение

Самым габаритным компонентом СВО является радиатор. При выносе его наружу пользователь теряет в мобильности, поэтому корпус для ПК с водяным охлаждением желательно подбирать основательно. Оптимальный вариант – модели с посадочными местами в верхней крышке под типоразмеры радиатора 360-420 мм. Желательно, чтобы свободного места под верхней панелью хватало для монтажа 3-х секционного теплообменника толщиной от 45 мм.

Система охлаждения своими руками

Систему охлаждения процессора можно приобрести уже в готовом виде. Однако из-за довольно высокой стоимости устройства и не всегда достаточной эффективности предлагаемых моделей, допускается сделать её самостоятельно и в домашних условиях.

Получившаяся система будет не такой привлекательной на вид, но вполне эффективной в действии.

Для самостоятельного изготовления системы следует сделать:

  • Ватерблок;
  • Радиатор;
  • Помпу.

Повторить конструкцию большинства СВО, выпускаемых серийно, вряд ли удастся. Однако, немного разбираясь в компьютерах и термодинамике, можно попробовать сделать что-то похожее если не на вид, то хотя бы по принципу действия.

Изготовление ватерблока

Главную деталь системы, на которую приходится максимум выделяемого процессором тепла, изготовить сложнее всего.

Для начала выбирается материал устройства – обычно это листовая медь. Затем следует определиться с габаритами – как правило, для охлаждения достаточно блока 7х7 см с толщиной около 5 мм.

Геометрическая форма устройства принимается такой, чтобы находящаяся внутри жидкость максимально эффективно омывала все элементы охлаждаемой конструкции.

Конструкция ватерблока своими руками

В качестве основания ватерблока можно выбрать, например, медную пластину, а рабочую структуру изготовить из тонкостенных медных трубок. Количество трубок на примере принято равным 32 шт.

Сборка осуществляется с использованием припоя и электропечи, нагретой до температуры 200 градусов. После этого приступают к изготовлению следующей детали – радиатора.

Радиатор

Чаще всего это приспособление выбирают уже готовым, а не изготавливают дома. Найти и приобрести такой радиатор можно либо в компьютерном магазине, либо в автомобильном салоне.

Однако существует возможность и самостоятельно создать необходимый элемент СВО из следующих предметов:

  • 4 медных трубок диаметром 0,3 см и длиной 17 см;
  • 18 метров медного обмоточного провода (d = 1,2 мм);
  • Любого листового металла толщиной около 4 мм.

Трубки обрабатываются припоем, из металла изготавливается оправка шириной в 4–5 см и длиной до 20 см. В ней сверлятся отверстия, куда заводится проволока. Теперь провод наматывается вокруг обмотки.

Процесс повторяют три раза, получив столько же одинаковых спиралей.

Обмотка проволоки для радиатора

Сборку спиралей и трубок начинают, сначала изготовив рамку. Затем натягивают на неё проволоку. Заключительным этапом является соединение рамки с входным и выходным коллекторами системы. В результате получается деталь следующего вида:

Радиатор в сборке

Помпа и другие детали

В качестве помпы допускается брать аналогичное устройство, предназначенное для аквариумов. Достаточно будет прибора производительностью 300–400 л/мин.

Его комплектуют расширительным бачком (плотно закрывающейся пластиковой ёмкостью) и шлангом из ПВХ с проходными патрубками из обрезков металлических (медных) трубок.

Помпа с трубками и бачком для охлаждения

Сборка

Перед тем, как собирать и устанавливать систему, следует удалить заводское устройство, установленное на процессоре. Теперь необходимо:

  • Закрепить ватерблок сверху охлаждаемой детали, для чего используют прижимную планку;
  • Заправить систему дистиллированной водой;
  • Закрепить на внутренней поверхности крышки компьютера радиатор (напротив отверстий). Если вентиляционных отверстий нет, их следует проделать самостоятельно.

Система в сборке

Завершающим этапом должно стать закрепление сначала вентилятора на процессоре (поверх ватерблока). И, наконец, необходимо обеспечить питание для помпы путём установки её рабочего реле внутри блока питания.

Рекомендуется подбирать устройство, рассчитанное на ток 50–100 мА и напряжение 3.3–24 В.

В результате получается собственноручно изготовленная система водяного охлаждения, достаточно эффективно снижающая температуру процессора на 25–35 градусов. При этом экономятся средства, которые могли бы пойти на покупку недешёвого оборудования.

Тематичсекие видеоролики:

https://youtube.com/watch?v=TlEKek548pA

Система водяного охлаждения для компьютера — Подробное описание

https://youtube.com/watch?v=OnJtT5v0G78

Система водяного охлаждения своими руками

Систему водяного охлаждения для вашего компьютера можно собрать своими руками. Водяное охлаждение — СВО поможет вам собрать бесшумную и стабильную систему для любых целей. Будь то игровой компьютер или рабочий.

https://youtube.com/watch?v=3Vtm9oNZWfk

Водяная система охлаждения для процессора

Идея использовать жидкость для охлаждения электронных компонентов появилась очень давно. В персональных компьютерах (ПК) она не была актуальной достаточно долгое время, пока мощности электронных компонентов были невелики.

Однако, с появлением уже центральных процессоров (ЦП) с частотами порядка сотен МГц и видеокарт с тепловыделением в десятки, а то и сотни ватт, актуальность применения систем жидкостного охлаждения снова обрела смысл.

Эффективное охлаждение, которое обеспечивает система с жидким хладагентом гораздо лучше, чем воздушное охлаждение. Связано это, в первую очередь с тем, что в отличие от систем воздушного охлаждения, где отвод тепла от процессора и его рассеивание производится внутри корпуса ПК, водяное охлаждение разбивает ту же техническую задачу на две составляющих.

При этом отвод тепла производится в водоблоке, установленном на процессоре, а его рассеивание осуществляется на радиаторе, вынесенном за пределы корпуса ПК. При этом нет необходимости в установке внутри корпуса габаритных радиаторов и мощных вентиляторов, поскольку все это вынесено за пределы корпуса.

В этом случае размер рассеивателя, а также скорость вращения обдувающих его вентиляторов может быть, в принципе, любой. Таким образом, решатся основная проблема охлаждения: благодаря жидкому хладагенту, можно получить охлаждение практически любой мощности с минимальным уровнем шума. Да, его габариты могут быть очень большими, но они не ограничиваются размерами корпуса ПК.

В настоящее время наиболее популярными являются системы водяного охлаждения (СВО), поскольку в них используется обычная дистиллированная вода, оказавшаяся по совокупности параметров самым оптимальным хладагентом для компонентов ПК.

Трубки

Те, кто хоть раз видел либо кастомное водяное охлаждение для ПК, либо магазинный вариант, знают, что есть во всей конструкции трубки. Обычно именно по таким шлангам проносится вода от одной точки теплообмена к другой. Это обязательный компонент, который, в принципе, может иметь некоторые вариации.

Чаще всего для ПК эти трубки изготавливаются из ПВХ. Есть, конечно, варианты из силикона

На производительность трубка мало оказывает влияния, единственное, на что нужно обратить внимание, – это на диаметр. Меньше 8 мм лучше не приобретать, если собираетесь самостоятельно изготавливать СВО

Revoltec Graphic Freezer PRO

Revoltec Graphic Freezer PRO

$27

Продукт предоставлен Revoltec

Наша оценка

Универсальное крепление; обдувает плату видео-карты; очень тихий вентилятор; радиаторы для видеопамяти в комплекте

Занимает два соседних с графическим слота расширения; недостаточная эффективность для топовых видеокарт

Кулер Graphic Freezer PRO представляет собой довольно габаритный алюминиевый радиатор, тепло к которому передается посредством двух толстых тепловых трубок, соединенных с медным основанием. Конструкция этой СО предполагает дополнительный обдув самой платы адаптера, улучшая охлаждение элементов. Лопасти вентилятора светятся в ультрафиолете. Общее впечатление от Graphic Freezer PRO в процессе работы весьма противоречиво: во время использования с GeForce 7900 GS он на равных соперничал с лучшими кулерами, но не сумел достойно охладить тестовый Radeon X1950 XTX – температура чипа достигла 100 ˚С на открытом тестовом стенде. Дополнительная проверка показала, что охладить Radeon X1800 XTX этому кулеру от Revoltec вполне по силам, но, видимо, на этом весь его потенциал исчерпывается. Для видеокарт с очень большим тепловыделением он не подойдет.

Тестирование

Видеокарта MSI GeForce RTX 2070 Super Ventus OC относится к младшей линейке графических ускорителей Ventus, которая характеризуется сбалансированными характеристиками и оптимальной системой охлаждения. Но, несмотря на проделанную работу разработчиками, как показало ранее тестирование MSI GeForce RTX 2070 Super Ventus OC, модель получилась горячей и шумной, которой требуется укрощение пылкого нрава. 

Наиболее перспективными системами охлаждения выступают жидкостные СО, которые демонстрируют в большей степени высокую эффективность при меньшем уровне шума. И рассматриваемые модели ID-Cooling Frostflow 240VGA и Icekimo 240VGA-RGB демонстрируют это наилучшим образом.

Благодаря идентичной помпе-водоблоку и основному радиатору, эффективность жидкостных систем охлаждения ID-Cooling Frostflow 240VGA и Icekimo 240VGA-RGB практически равна: решающую роль играют более мощные вентиляторы на модели Icekimo. 

Переходим к температурным результатам подсистемы питания VRM графического ускорителя. Роль помпы и вентиляторов типоразмера 120 мм полностью нивелируется на охлаждение печатной платы, главная же задача отводится вентилятору 92 мм основного блока, скорость вращения которого теперь заносится в график.

ID-Cooling Icekimo 240VGA-RGB оказывается эффективнее младшей модели за счет более оборотистой вертушки. Однако объяснить существенный разрыв при равной скорости можно лишь только формой крыльчатки лопастей и большему прокачиваемому воздуху, так как остальные компоненты в тестировании не изменялись. Результаты снимались повторно, без изменений.

Температура микросхем памяти фиксировалась пирометром. 

Жидкостная система охлаждения ID-Cooling Icekimo 240VGA-RGB не только мощнее младшей модификации Frostflow 240VGA, но и громче: если модель «Мороженое» на максимальной скорости выделяется на фоне работы ПК, а уровень шума можно охарактеризовать как средний, то «Ледяной поток» едва побеспокоит вас даже в вечернее время своим присутствием.

Особенно данная разница заметна на примере вентилятора 92 мм основного блока.

Используемая помпа не имеет возможности для мониторинга скорости вращения, поэтому доверимся официальным данным и отметим данный параметр как равный 2300 об/мин. В обоих случаях установлена одна модель помпы, наши экземпляры демонстрировали практически равный уровень шума, очень тихий и комфортный для продолжительной работы.

Лучшие системы водяного охлаждения для компьютера

Основное назначение систем охлаждения ПК – обеспечение бесперебойной и стабильной работы самого компьютера и создание нормальных условий для его пользователя, что подразумевает минимум шума во время эксплуатации.

Эти устройства отводят тепло от таких элементов, как процессор и блок питания, предотвращая их перегрев и последующий выход из строя.

Существует 2 варианта системы охлаждения – пассивное и активное. Второй тип, в свою очередь, делится на воздушное, подходящее для обычных ПК и водяное, которое требуется для систем с очень мощными или разогнанными процессорами.

Жидкостное охлаждение отличается небольшими габаритами, невысоким уровнем создаваемого шума и высокой эффективностью отвода тепла, благодаря чему пользуется большой популярностью.

Для выбора такой системы следует учесть некоторые нюансы, включая:

  • Стоимость;
  • Совместимость с процессорами или видеокартами;
  • Параметры охлаждения.

Ниже приведен список самых популярных систем водяного охлаждения с популярного интернет-каталога Яндекс-маркет.

DeepCool Captain 240

Оригинальная на вид СВО DeepCool Captain 240 оборудована двумя фирменными чёрно-красными вентиляторами с насечками на лопастях. Крыльчатка каждого способна вращаться со скоростью до 2200 об/мин, создавая шум не более 39 дБ.

При этом на системе есть разветвитель, позволяющий установить дополнительно ещё 2 вентилятора. Срок службы, который гарантируется производителем, составляет около 120 тысяч часов.

Вес системы, подходящей для процессоров и AMD и Intel, равен 1,183 кг.

DeepCool Captain 240

Примерная стоимость устройства – от 5500 руб.

Arctic Cooling Liquid Freezer 240

Сравнительно новую систему охлаждения видеокарт Liquid Freezer 240, появившуюся в продаже в конце прошлого года, можно назвать универсальной, так как подходит она для большинства современных процессоров, создавая во время работы уровень шума не более 30 дБ.

Скорость вращения лопастей каждого из 4 вентиляторов – до 1350 об/мин, масса системы – 1,224 кг. Главным достоинством является снижение температуры процессора на 40–50 градусов, а недостатком – лишь громоздкие размеры.

Arctic Cooling Liquid Freezer 240

Покупка такого гаджета обойдётся в 6000 руб.

Cooler Master Nepton 140XL

Эффективная система охлаждения всего системного блока Nepton 140XL отличается увеличенными размерами радиатора и шлангов, а также последовательным, а не параллельным расположением двух вентиляторов.

Благодаря наличию 140-миллиметрового вентилятора JetFlo, обширной площади контакта жидкости с теплосъёмником и высокому качеству обработки последнего она охлаждает достаточно мощные процессоры, включая даже те, которые были разогнаны для увеличения производительности.

При этом эксплуатационный срок устройства, совместимого с процессорами типа Intel (S775, S1150, S1356, S2011) и AMD (AM2, AM3, FM2), достигает 160 тысяч часов. Максимальная скорость вращения лопастей – 2000 об/мин, масса составляет 1,323 кг, а шум при работе не превышает 39 дБ.

Cooler Master Nepton 140XL

DeepCool Maelstrom 240T

Систему Maelstrom 240T, предназначенную для процессоров Intel 1150–1156, S1356/1366 и S2011, а также AMD FM2, AM2 и AM3, отличает синяя подсветка вентиляторов, позволяющая не только охлаждать компьютер, но и сделать его моддинг.

Срок службы устройства – в переделах 120 тысяч часов, вес – 1100 г, создаваемый уровень шума – до 34 дБ.

DeepCool Maelstrom 240T

Купить устройство в Интернете можно за 4400–4800 руб.

Corsair H100i GTX

Универсальную и достаточно простую в компоновке систему Corsair H100i GTX используют для охлаждения большинства выпускающихся в течение последних нескольких лет процессоров AMD и Intel.

Вес оборудования в сборе составляет 900 г, уровень шума – около 38 дБ, а сила вращения вентиляторов – до 2435 об/мин.

Corsair H100i GTX

Средняя стоимость карты составляет в сети около 10 тыс. руб.

Cooler Master Seidon 120V VER.2

Особенностью использования системы Cooler Master Seidon 120V является возможность устанавливать её как внутри, так и снаружи корпуса. При этом вентиляторы, вращающиеся со скоростью до 2400 об/мин, работают очень тихо – с уровнем шума до 27 дБ.

Совместимость устройства – современные процессоры Intel и AMD (до LGA1150 и Socket AM3, соответственно). Система весит всего 958 г и способна проработать 160 тыс. часов.

Cooler Master Seidon 120V VER.2

Вариант СВО для Intel и AMD

Это самый дешёвый вариант для любых из систем.

Общая стоимость составляет 15052 рублей. Кроме этого нам необходимы вентиляторы, возьмем комплект вентиляторов Arctic P12 Value Pack.

В итоге общая сумма 15052+1700=16752 рублей. Достаточно низкая цена. 

Помпа, резервуар и водоблок — 1 общий компонент, за счёт чего общая цена значительно ниже, кроме этого необходимо всего 4 фитинга, т.к. элемента всего 2, а не 4, как в случае выше. Также вы можете видеть заглушку, которая необходима, чтобы заглушить один порт. Но есть недостаток — комбинирование помпы, резервуара и водоблока. Заливать жидкость вам будет достаточно неудобно, т.к. резервуар находится на процессоре, либо заливать вам необходимо будет заранее, кроме этого при необходимости увеличения производительности путём приобретения более хорошего водоблока или помпы вам придётся продать данный комбинированный компонент и перейти на более стандартные решения. Данный контур позволяет беспроблемно и менее затратно менять только радиатор и вентиляторы. Конечное решение покупать или нет такой вариант, вам придётся принять самим.

В качестве вывода хотелось бы сказать, что данная система будет лучше, чем готовые СВО, которые продаются в магазинах, но, как вы можете видеть, цена несопоставима с готовыми решениями и, к сожалению, всё ещё находится на довольно высоком уровне. Собирать кастомную СВО или нет, оставляю на ваш выбор.

EVGA GeForce GTX 1080 FTW HYBRID

CUDA-ядра: 2560 | Тактовая частота: 1721 МГц | Объем памяти: 8 ГБ | Частота памяти: 10 ГГц | Интерфейс шины: PCI Express 3.0 x16 | DirectX: DirectX 12 | OpenGL: 4.5 | Выходы: 3 x DisplayPort, DVI, HDMI

Если вы ищете очень продвинутую видеокарту для игр, EVGA GeForce GTX 1080 FTW HYBRID — то, что нужно. Данный инновационный графический процессор основан на архитектуре Pascal от Nvidia. Устройство сделано с использованием новейшего и сверхбыстрого FinFET и является очень энергоэффективным.

Говоря о производительности, видеопамять 8 ГБ типа GDDR5X предоставляет новейшие игровые технологии, виртуальную реальность нового поколения и лучшую в отрасли производительность. Видеокарта поддерживает разрешение до 7680 × 4320 и демонстрирует одновременный вывод на 4 монитора. Базовая частота здесь составляет 1721 МГц с возможность разгона до 1860 МГц.

Благодаря функции жидкостного охлаждения, эта невероятная видеокарта обладает большой способностью выдерживать нагрев и значительно снижает рабочую температуру графического процессора. Температура здесь примерно на 40° C меньше, чем в стандартной GeForce GTX 1080. Процессор оснащен 120-миллиметровым радиатором и вентилятором, что значительно снижает нагрев. Видеокарта обладает специальной платой с охлаждающим вентилятором размером 10 см для охлаждения VRAM и VRM.

Но и это ещё не всё! GTX 1080 FTW поддерживает новейший API-интерфейс Microsoft DirectX 12, который обеспечивает фантастическую производительность в новейших играх. Вы получите плавный геймплей при игре c разрешением в 4K! Видеокарта предлагает настраиваемый RGB-светодиод, который можно настроить с помощью программы разгона EVGA Precision XOC.

Максимальная потребляемая мощность карты составляет 215 Вт. Требуется 8-контактный разъем питания.

Установка охладителя

Сборка и проектирование вашей системы начинается с выбора охладителей или водоблоков – приспособлений, которые будет крепиться непосредственно к нагревающимся компонентам ПК – центральному процессору, чипсету и процессору видеокарты. Они должны быть не только необходимых размеров, но также должны соответствовать отводимой мощности и иметь правильное расположение крепежа, учитывающие посадочные места на материнке и плате видеокарты.

Уже на этом этапе необходимо определиться с конструкцией всей системы в целом: типе и рассеиваемой мощности радиатора, скорости течения хладагента, мощности помпы и способе отвода хладагента за пределы корпуса. Здесь возникает масса технических вопросов, главный из которых – величина рассеиваемой на радиаторе мощности.

Инструменты для работы

Для сборки компонентов системы охлаждения понадобятся следующие инструменты:

  • отвёртка для крепления водоблоков к нагревающимся элементам;
  • гаечный ключ для подключения фитингов к водоблокам;
  • специальные ножницы для резки трубок, по которым будет двигаться хладагент;
  • плоскогубцы для крепления хомутами трубок к фитингам.

Фитинги – это своеобразные переходники между водоблоком и трубкой с хладагентом. Они жестко прикручиваются к охладителю одним концом, а на второй их конец надеваются трубки, затягивающиеся хомутами.

Установка охладителя на ЦП

Пожалуй, самый простой этап сборки СВО – это её установка на процессор. Водоблоки для процессора обладают стандартными размерами и точками крепления, соответствующими тому или иному типу сокета. Необходимо просто смазать поверхность процессора термопастой, установить на него водоблок и зафиксировать его при помощи болтов и отвёртки. После чего к водоблоку прикручиваются два фитинга.

Установка охладителя на видеокарту

В целом, эта процедура повторяет то, что делалось на центральном процессоре, с той лишь разницей, что охладитель видеокарты должен иметь хороший контакт не только с её процессором, но и с памятью и системой её электропитания – примерно десятком полевых транзисторов, называющихся также мосфетами.

Обычно, такие охладители выпускаются под конкретную модель видеокарты и их площадь покрывает все необходимые элементы, нуждающиеся в охлаждении. Процессор непосредственно контактирует с охладителем через тонкий слой термопасты, а чипы памяти и мосфеты получают тепловой контакт благодаря специальной термопрокладке, идущей в комплекте с водоблоком.

Установка насоса

Насос для подачи хладагента или помпа устанавливается одновременно с расширительным бачком или резервуаром. Резервуар необходим для обеспечения термического расширения охлаждающей жидкости и для содержания в себе её некоторого запаса. Оба компонента располагаются внутри корпуса. Никаких особенностей или нюансов монтажа при этом нет. Главное – надёжное крепление всей конструкции внутри корпуса.

Соединение шлангами

Когда будут установлены все компоненты внутри корпуса ПК, их соединяют шлангами. Предварительно необходимо при помощи ножниц нарезать шланги нужной длины. И здесь есть определённая сложность, заключающаяся в правильной последовательности соединения компонентов. Хладагент начинает своё движение от помпы к охлаждающимся компонентам, от менее горячего к более горячему.

Шланги присоединяются к фитингам при помощи хомутов. Выход трубки с видеокарты присоединяется к одному из фитингов приспособления, выводящего хладагент из корпуса к рассеивателю. Второй фитинг этого приспособления замыкает круг СВО в корпусе, подключением шланга к оставшемуся фитингу помпы.

Подготовка насоса к работе

Подготовка насоса к работе заключается в подключении к нему электропитания напряжением в +12 В от источника питания при помощи предусмотренного конструкцией разъёма.