Токовая петля

Содержание

История разработки

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Это были лётные испытания моделей, движимых химическими взрывчатыми веществами. Модели называли «put-puts», или «hot rods». Несколько моделей было разрушено, но один 100-метровый полёт в ноябре 1959 года был успешен и показал, что импульсный полёт мог быть устойчивым. Модель высадилась на парашюте неповрежденной и находится в коллекции Смитсоновского национального музея авиации и космоса.

Схема ядерного заряда направленного действия, предполагаемого в качестве топливных элементов для «Ориона»

Аппарат представлял собой форму пули и имел массу 133 кг. Позади аппарата, за плитой, произведено 6 взрывов зарядов тринитротолуола по 1,04 кг каждый. Для придания начальной скорости аппарат запускался из миномёта, для чего требовалось 4,52 кг пороха.

Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Характеристика расцепления «A» или «AC»?

Более популярный тип «AC» — срабатывает исключительно на переменный ток с синусоидной кривой. Чаще всего это происходит из-за повреждения изоляции бытовой техники (холодильники, стиральные машины, бойлеры и прочее), когда оголенная фаза касается металлического корпуса.

Но иногда в электроприборах возникают утечки, на которые дифференциальная защита не срабатывает. Например, она не реагирует на постоянный или пульсирующий ток, образующейся в блоках питания электроники. Тем не менее «AC» — самый простой и распространенный диф, и еще такая защита на 30% дешевле, чем «A». Как правило, на корпусе маркируются значком в виде синусоиды.

«A» — более чувствительный расцепитель, предотвращающий любую утечку, включая пульсирующий и постоянный токи, вырабатываемые в электронике с микросхемами, начиненными полупроводниками (резисторами, тиристорами, диодами и т.д.). Это более чувствительная защита. Маркировка в виде синусоиды сверху и двух кривых снизу.

Европейские страны постепенно отказываются от «AC», переходя на «A», как более надежный и безопасный. Тем не менее «AC» можно свободно применять для электроприборов без электронной «начинки». В инструкциях некоторых электроприборов указано, что они могут быть защищены только УЗО (или дифавтоматом) типа «A».

Поключение преобразователя тока в напряжение к ESP32

Подключаю землю от конвертера к пину G(ND) ESP32 DevKit, а Vout к пину ADC1_0 (GPIO36). В общем-то можно переносить код ESP8266 на ESP32 — он будет работать с парой правок: pin для чтения не 0, а 36 и поправочный коэффициент ориентировочно 3350. Точно откалибровать сложно. 12-битный АЦП достаточно точный, поэтому будет читать и малейшие изменения входного напряжения. Кроме того сам АЦП без откалиброванного опорного напряжения (reference voltage) не сможет обеспечить точные измерения.

void setup() {
    Serial.begin(115200);
}

int lastMillis = 0;
void loop() {
  int currentMillis = millis();
  if (currentMillis - lastMillis > 500)
  {
    float adcr = analogRead(A0);
    float val = adcr*20/3350;
    Serial.print("Read ADC pin : " + String(adcr) + "\t");
    Serial.println("ReadADC, mA: \t" + String(val));
    lastMillis = currentMillis;
  }
}

Можно использовать другой вариант кода для измерения напряжения на ESP32. Но в этом случае поправочный коэффициент будет 3850:

#include <driver/adc.h>

void setup() {
    Serial.begin(115200);
    adc1_config_width(ADC_WIDTH_BIT_12);
    adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11);
}

int lastMillis = 0;
void loop() {
  int currentMillis = millis();
  if (currentMillis - lastMillis > 500)
  {
    float adcr = adc1_get_raw(ADC1_CHANNEL_0);
    float val = adcr*20/3850;
    Serial.print("Read ADC pin : " + String(adcr) + "\t");
    Serial.println("ReadADC, mA: \t" + String(val));
    lastMillis = currentMillis;
  }
}

Для сглаживания шума в схемотехнику ESP32 производитель рекомендует добавить емкость 0.1 uF на вход АЦП, который задействован и использовать усреднение по нескольким отсчетам. 

Поключение преобразователя тока в напряжение к ESP8266

После тщательной калибровки подключаем землю от конвертера к пину G(ND) Wemos D1 mini, а Vout к пину A0.

Поскольку конвертер 10-ти битный, то количество уровней равно 2^10 = 1024. В теории, диапазон измерения напряжения АЦП ESP8266 от 0 до 1 V. Производители плат распаивают дополнительный резистивный делитель напряжения, поэтому данные о том, какое напряжение поддерживает АЦП нужно смотреть у производителя платы. В источниках указывается, что «Wemos D1 Mini has already build in divider R1 220k/ R2 100k for pin A0», поэтому напряжение может меняться от 0 до 3,3 V. При калибровке было выставлено, что 20 mA соответствует 3 V. Верхнему напряжению должно соотвествовать значение 1023, поскольку 0 соответствует 0, а всего 1024 уровня. Расчетно получаем, что L = 1023*3/3,3 = 930.

Однако, если подать на вход аналогового входа напряжение 3 V, то АЦП отобразит значение 991, что значительно отличается от теоретического расчета. Если пересчитать какой-же верхний предел соотвествует полученному для 3 V значению, то получится: 991*3,3/1023 = 3,196774 V. В общем, то-ли АЦП настолько плох, то-ли какие-то иные проблемы.

Формула для пересчета значения АЦП в ток, I = adc*20(mA)/991, где adc — величина, считанная с входа АЦП.

void setup() {
    Serial.begin(115200);
}

void loop() {
  float adcr = analogRead(0);
  float val = adcr*20/991;
  Serial.print("ReadADC: " + String(adcr) + "\t");
  Serial.println("ReadADC, mA: \t" + String(val));
  delay(500);
}

После запуска программы получаем следующие результаты:

21:21:54.448 -> ReadADC: 992.00	ReadADC, mA: 	20.02
21:21:54.928 -> ReadADC: 991.00	ReadADC, mA: 	20.00
21:21:55.441 -> ReadADC: 991.00	ReadADC, mA: 	20.00
21:21:55.955 -> ReadADC: 991.00	ReadADC, mA: 	20.00
21:21:56.435 -> ReadADC: 991.00	ReadADC, mA: 	20.00
21:21:56.951 -> ReadADC: 991.00	ReadADC, mA: 	20.00

Если отсоединить источник тока, то АЦП показывает нулевое значение. Разрядности АЦП не хватает, чтобы распознать столь маленькое значение напряжение. По нулю на АЦП можно идентифицировать обрыв провода.

ЦАП может быть программно переключен на измерение напряжения питания, в этом случае значения со входа A0 читать бессмысленно.

ADC_MODE(ADC_VCC) //Switch ADC to measuring battery level
 
float batterylevel;  

void setup(){  
  Serial.begin(115200);  
  batterylevel = ESP.getVcc();  

  if (batterylevel <= 2170){  
    ESP.deepSleep(0);  
  } 
}  

void loop()
{
  Serial.print("Battery level is: " + String((batterylevel / 1000.0))); 
} 

Параметры замыкающих герконов стандартного и промежуточного типов

Наименование геркона КЭМ-1 КЭМ-6 МК-36701 МКА-27101
Тип геркона стандартный стандартный промежуточный промежуточный
Магнитодвижущая сила срабатывания, А 55…110 38…50 50…80 30…60
Время срабатывания, мс 3 2 2 1,5
Максимальная коммутируемая мощность, Вт 30 12 21 12
Максимальное коммутируемое напряжение, В 220 150 100 110
Максимальный коммутируемый ток, А 1 0,25 0,35 0,35
Электрическая прочность, В 500 500 500
Сопротивление электрических контактов, Ом 0,08 0,1 0,07 0,12
Максимальная частота коммутаций, Гц 100 20 50 100
Температура окружающей среды, °С -60…+125 -60…+125 -60…+100 -60…+100
Вибрационные нагрузки, диапазон частот, Гц 1…600 1…50 1…600 1…600
Вибрационные нагрузки, максимальное ускорение, м/с2 98 98 98 98
Диаметр баллона, общая длина, мм 50/80 36/63,5 36/63,5 27/45,6

«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

  • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с  сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
  • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

Управление сигналом 0-10 В

С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести трёхходовой клапан в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

Сети на 380 вольт

Перевод значений тока в мощность для трехфазной сети не отличается от вышеприведенного, только необходимо учитывать тот факт, что потребляемый нагрузкой ток распределяется по трем фазам сети. Перевод ампер в киловатты осуществляется с учетом коэффициента мощности.

В трехфазной сети нужно понимать различие фазного и линейного напряжения, а также линейных и фазных токов. Также возможны 2 варианта подключения потребителей:

  1. Звезда. Используется 4 провода – 3 фазных и 1 нейтральный (нулевой). Использование двух проводков, фазного и нулевого, является примером однофазной сети 220 вольт.
  2. Треугольник. Используется 3 провода.

Формулы того, как перевести амперы в киловатты для обоих типов соединения, одинаковы. Различие заключается только в случае соединения треугольником для расчета отдельно подключенных нагрузок.

Соединение звездой

Если брать фазный проводник и нулевой, то между ними будет фазное напряжение. Линейным называют напряжение между фазными проводами, и оно больше фазного:

Uл = 1.73•Uф

Ток, протекающий в каждой из нагрузок, такой же, как и в проводниках сети, поэтому фазные и линейные токи равны. При условии равномерности нагрузки ток в нулевом проводнике отсутствует.

Перевод ампер в киловатты для соединения звездой производится по формуле:

P=1.73•Uл•Iл•cosø

Соединение треугольником

При данном типе соединения напряжения между фазными проводами равняется напряжения на каждой из трех нагрузок, а токи в проводах (фазные токи) связаны с линейными (протекающими в каждой нагрузке) выражением:

Iл = 1.73•Iф

Формула перевода соответствует приведенной выше для “звезды”:

P=1.73•Uл•Iл•cosø

Такой перевод величин используется при выборе автоматов защиты, устанавливаемых в фазные проводники питающей сети. Это справедливо при использовании трехфазных потребителей – электродвигателей, трансформаторов.

Если используются отдельные нагрузки, соединенные треугольником, то защита ставится в цепь нагрузки в формуле для расчета используют значение фазного тока:

P=3•Uл•Iф•cosø

Обратный перевод ватт в амперы осуществляется по обратным формулам с учетом условий подключения (тип соединения).

Поможет избежать вычисления заранее составленная таблица перевода, где приведены значения для активной нагрузки и наиболее распространенного значения cosø=0.8.

Таблица 1. Перевод значений киловатт в амперы для 220 и 380 вольт с поправкой cosø.

Мощность, кВт Трехфазный переменный ток, А
220 В 380 В
cosø
1.0 0.8 1.0 0.8
0,5 1.31 1.64 0.76 0.95
1 2.62 3.28 1.52 1.90
2 5.25 6.55 3.,4 3.80
3 7.85 9.80 4.55 5.70
4 10.5 13.1 6.10 7.60
5 13.1 16.4 7.60 9.50
6 15.7 19.6 9.10 11.4
7 18.3 23.0 10.6 13.3
8 21.0 26.2 12.2 15.2
9 23.6 29.4 13.7 17.1
10 26.2 32.8 15.2 19.0

Читайте далее:

Как перевести амперы в ватты и обратно?

Что такое активная и реактивная мощность переменного электрического тока?

Что такое делитель напряжения и как его рассчитать?

Что такое фазное и линейное напряжение?

Как перевести киловатты в лошадиные силы?

Аналоговая токовая петля

Аналоговая токовая петля используется для передачи аналогового сигнала по паре проводов в лабораторном оборудовании, системах управления производством и т. д.

Применяется смещенный диапазон 4—20 мА, то есть наименьшее значение сигнала (например, 0) соответствует току 4 мА, а наибольшее — 20 мА. Таким образом весь диапазон допустимых значений занимает 16 мА. Нулевое значение тока в цепи означает обрыв линии и позволяет легко диагностировать такую ситуацию.

Интерфейс аналоговой токовой петли позволяет использовать разнообразные датчики (давления, потока, кислотности и т. д.) с единым электрическим интерфейсом. Также данный интерфейс может использоваться для управления регистрирующими и исполнительными устройствами: самописцами, заслонками и т. д.

Диапазоны токов и напряжений описаны в ГОСТ 26.011-80 «Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные».

Основное преимущество токовой петли (по сравнению с более дешёвой параметрической передачей напряжением) — то, что точность не зависит от длины и сопротивления линии передачи, поскольку управляемый источник тока будет автоматически поддерживать требуемый ток в линии. Такая схема позволяет запитывать датчик непосредственно от линии передачи. Несколько приёмников можно соединять последовательно, источник тока будет поддерживать требуемый ток во всех одновременно (согласно закону Кирхгофа). Но если в цепи появятся утечки, работа токовой петли нарушится, и средствами реализации самой токовой петли это не обнаруживается, что необходимо учитывать при проектировании ответственных производственных участков.

Поверх аналоговой токовой петли можно передавать цифровую информацию. Такой способ передачи данных описан в HART-протоколе. Конкурирующими протоколами, способными в будущем вытеснить HART, являются различные цифровые полевые шины, такие как Foundation fieldbus или PROFIBUS.

Ампер, как единица измерения:

Ампер – единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ, названная в честь французского физика Андре Ампера.

Ампер имеет русское обозначение – А; международное обозначение – A.

Ампер – это сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7 ньютона (формулировка действовавшая до 20 мая 2021 года, принятая IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году).

Определение ампера, основанное на использовании численного значения элементарного электрического заряда, было принято на XXVI Генеральной конференции мер и весов (16 ноября 2021 года). Формулировка, вступившая в силу 20 мая 2021 года, гласит, что ампер есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10−19, когда он выражен единицей Кл, которая равна А·с, где секунда определена через ΔνCs.

Сила тока в проводнике равна 1 амперу, если за одну секунду через поперечное сечение этого проводника проходит электрический заряд, равный 1 кулону (6,241·10¹⁸ электронов).

А = Кл / с.

1 А = 1 Кл / 1 с.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

А = (В · Ф) / с.

1 А = (1 В · 1 Ф) / 1 с.

В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование – ампер-виток).

Кроме того, ампер относится к числу основных единиц в системе единиц МКСА.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ампер пишется со строчной буквы, а её обозначение – с заглавной (А). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ампера.

Как обозначаются амперы, миллиамперы и микроамперы

Правильные обозначения: ампер — А, миллиампер — мА, микроампер — мкА.

Эта физическая величина названа фамилией учёного, следовательно, её запись всегда будет содержать в русском обозначении букву А в верхнем регистре, в международном — латинскую букву A также в верхнем регистре.

Обратите внимание! Не стоит путать МА и мА, особенно при решении задач. В первом случае обозначен мегаампер (10^6 А), а во втором — миллиампер (10^-3 А), который в миллиард раз меньше мегаампера

Правописание дольных и кратных единиц, в их числе миллиампер и микроампер, будет выполняться в соответствии с правилами написания единиц и приставок, установленными ранее упомянутой Международной системой измерений (СИ).

  • Приставка пишется слитно с наименованием или обозначением единицы.
  • Недопустимо употребление двух или более приставок подряд (например, микромиллиампер).
  • В большинстве случаев принято выбирать приставку таким образом, чтобы стоящее перед ней число находилось в диапазоне от 0,1 до 1000.

Дополнительная информация! Приставка милли переводится с латинского (mille) как «тысяча». Приставка микро имеет древнегреческие корни (μικρός) и переводится как «малый».

Унифицированный сигнал напряжения 0-10 В

При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

Преобразовать микроампер в миллиампер (мкА в мА):

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘159 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ‘4 мкА в мА‘ или ’88 мкА сколько мА‘ или ’64 микроампер -> миллиампер‘ или ‘1 мкА = мА‘ или ’36 микроампер в мА‘ или ’74 мкА в миллиампер‘ или ’68 микроампер сколько миллиампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды. Кроме того, калькулятор позволяет использовать математические формулы

В результате, во внимание принимаются не только числа, такие как ‘(60 * 95) мкА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии

Например, такое сочетание может выглядеть следующим образом: ‘159 микроампер + 477 миллиампер’ или ’89mm x 99cm x 93dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,294 538 259 824 6 × 10 25 . В этой форме представление числа разделяется на экспоненту, здесь 25, и фактическое число, здесь 1,294 538 259 824 6. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,294 538 259 824 6E+25. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 12 945 382 598 246 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

Интерфейс MIDI

MIDI формат популярен среди музыкантов, это специализированный протокол цифровой звукозаписи. На физическом уровне он организован по схеме токовой петли 5 мА. Разумеется, из-за разницы уровней единиц напрямую два стандарта передачи не совместимы. Согласно Михаилу Гуку, MIDI разработан в 1983 году и стал правилом де-факто подключения синтезаторов.

Википедия сообщает, что в июне 1981 года корпорация Роланд подала крупному производителю синтезаторов – Обергейм Электроникс – идею стандартного интерфейса. Уже в октябре Смит, Обергейм и Какихаши обсудили это с правлением Ямаха, Корг и Каваи, а в ноябре на выставке общества AES продемонстрировали первый работоспособный вариант.

Два года интерфейс находился на доработке, и в январе 1983-го Смит объединил через MIDI два аналоговых синтезатора. Это позволило напрямую перекачивать аранжировки и создавать новые музыкальные композиции. Позднее файлы MIDI введены в поддержку операционной системы Windows, позволяя авторам напрямую заниматься обработкой мелодий, насыщая их новыми спецэффектами, отсутствующими в оригинальных синтезаторах. Внедрение сэмплов различных инструментов позволяло исполнителю воспроизводить музыкальное сопровождение любой сложности.

Применение MIDI

В MIDI используются физические линии на 5 мА. Редко встречается 10. Гальваническая развязка осуществляется через оптрон. Характерной чертой признано инвертирование сигнала:

  1. Есть ток.
  2. Нет тока.

Поэтому MIDI напрямую не совместим с обычной токовой петлёй. Физический интерфейс видели многие, но не знали название. Визуально розетка представляет собой диск диэлектрика с боковым вырезом, по периметру расположены 5 отверстий (DIN). Конструкция охвачена по кругу экраном. Музыканты насчитывают три вида интерфейса:

  1. MIDI-In.
  2. MIDI-Out.
  3. MIDI-Thru.

Порт MIDI иногда стоит на материнской плате персонального компьютера. Физически задействуются в нормальном режиме не используемые контакты 12 и 15 порта игрового адаптера DB-15S. Используемая здесь логика ТТЛ требует наличия адаптера для стыковки со стандартными синтезаторами по протоколу токовой петли. Микросхема преобразователя не слишком сложная, включает оптрон, диод, ряд логических элементов.

Порт MIDI программируется через UART как последовательный COM-порт. В продаже есть звуковые карты с MIDI либо отдельные платы расширения на свободные слоты.

Нормирующий преобразователь

При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

Так выглядит датчик температуры с нормирующим преобразователем:

   Tags: Промышленная автоматика, сигнал 0-10 В, сигнал 4-20 мА, унифицированные сигналы

Условное обозначение герконов

  • первый элемент — определяет условное наименование геркона. МК — магнитоуправляемый контакт герметизированный, КЭМ — контакт электромагнитный, КМГ — магнитоуправляемый контакт с повышенным контактным нажатием (для коммутации больших токов — более 5 А);
  • второй элемент — указывает на систему коммутации геркона: А — замыкающий, В — размыкающий, С — перекидной, Д — переходной;
  • третий элемент — буква «Р» присутствует только в ртутных герконах;
  • четвертый элемент — двузначное число показывает длину баллона в миллиметрах;
  • пятый элемент — указывает на функциональное назначение геркона: 1 — малой и средней мощности, 2 — повышенной мощности, 3 — мощные, 4 — высоковольтные, 5 — высокочастотные, 6 — «с памятью», 7 — специальные (с повышенной устойчивостью к внешним факторам и характеру нагрузки), 8 — измерительные.
  • шестой элемент — указывает порядковый номер разработки.

По типу контактов различают герконы замыкающие и переключающие, по состоянию поверхности контактов — сухие и жидкостные. Внутри баллона сухих герконов находятся инертные газы. Контакты представляют собой ферромагнитные пружины, покрытые ценными металлами. Герконы подразделяются также на маломощные (коммутируемая мощность до 60 Вт) и повышенной мощности (до 1000 Вт), низкочастотные и высокочастотные, низковольтные (коммутируемое напряжение до 250 В) и высоковольтные (свыше 250 В), имеются герконы с «памятью» и специальные. Далее приводим справочные параметры отечественных герконов, а в конце статьи — импортных герконов-реле.

Проводим расчеты

Как уже говорилось, для начала исходные величины необходимо привести к единому представлены. Оптимальный вариант – к «чистым» значениям, то есть вольтам, амперам, ваттам.

Расчет для постоянного тока

Здесь – никаких сложностей. Формула была показана выше.

При расчете мощности по силе тока:

P = U × I

Если считается сила тока по известной мощности,

I = P / U

Расчет для однофазного переменного тока

Вот здесь может быть особенность. Дело в том, что некоторые виды нагрузок в работе потребляют не только обычную, активную мощность, но и так называемую реактивную. Упрощенно говоря, она затрачивается на обеспечение условий работы прибора – создание электромагнитных полей, индукции, заряда мощных конденсаторов. Интересно, что на само общее потребление электроэнергии эта составляющая особо не влияет, так как, образно говоря, «сбрасывается» обратно в сеть. Но вот для определения номиналов защитной автоматики, сечения кабеля – ее желательно принимать в расчет.

Для этого применяется специальный коэффициент мощности, иначе называемый косинусом φ (cos φ). Он обычно указывается в технических характеристиках приборов и устройств с выраженной реактивной составляющей мощности.

Значение коэффициента мощности (cos φ) на шильдике асинхронного электродвигателя.

Формулы с этим коэффициентом приобретают следующий вид:

P = U × I × cos φ

и

I = P / (U × cos φ)

У приборов, в которых реактивная мощность не используется (лампы накаливания, обогреватели, электроплиты, телевизионная и оргтехника и т.п.), этот коэффициент равен единице, и не влияет на результаты расчета. Но если для изделий, например, с электроприводами или индукторами этот показатель указан в паспортных данных,  будет правильным принять его в расчет. Разница в показателях силы тока может быть довольно существенной.

Расчет для трехфазного переменного тока

Не будем углубляться в теорию и разновидности схем трёхфазных подключений нагрузки. Просто приведем несколько видоизмененные формулы, использующиеся для расчетов в таких условиях:

P = √3 × U × I × cos φ

и

I = P / (√3 × U × cos φ)

Чтобы нашему читателю было легче произвести необходимые расчеты, ниже размещены два калькулятора.

Для обоих общей исходной величиной является напряжение. А далее, в зависимости от направления расчета, указывается или замеренное значение тока, или известное значение мощности прибора.

Коэффициент мощности по умолчанию указан, равным единице. То есть для постоянного тока и для приборов, в которых используется только активная мощность, он оставляется как есть, по умолчанию.

Других вопросов по расчету, наверное, возникнуть не должно.

Калькулятор расчеты силы тока по известному значению потребляемой мощности

Перейти к расчётам

Укажите запрашиваемые значения и нажмите«РАССЧИТАТЬ СИЛУ ТОКА»

Напряжение питания

Потребляемая мощность

Расчет проводится:

— для цепи постоянного тока или для переменного однофазного тока

— для цепи переменного трехфазного тока

Коэффициент мощности (cos φ)

Калькулятор расчета потребляемой мощности по промеренному значению силы тока

Перейти к расчётам

Укажите запрашиваемые значения и нажмите«РАССЧИТАТЬ ПОТРЕБЛЯЕМУЮ МОЩНОСТЬ»

Напряжение питания

Сила тока

Расчет проводится:

— для цепи постоянного тока или для переменного однофазного тока

— для цепи переменного трехфазного тока

Коэффициент мощности (cos φ)

Полученные значения могут использоваться для дальнейшего подбора необходимого защитного или стабилизирующего оборудования, для прогнозов потребления энергии, для анализа правильности организации своей домашней электросети.

А пример, как рассчитываются параметры для выделенной линии с последующим подбором автоматического выключателя, хорошо показан в предлагаемом вниманию видеосюжете:

Цифровая токовая петля

Преобразователь RS-232 / токовая петля Применяется в телекоммуникационном оборудовании и компьютерах для последовательной передачи данных.

История

Токовая петля использовалась задолго до появления стандартов RS-232 и V.24. В 1960-е годы телетайпы начали использовать стандарт токовой петли 60 миллиампер. Последующие модели (одна из первых — Teletype Model ASR-33) использовали стандарт 20 мА. Этот стандарт нашел широкое применение в мини-компьютерах, которые первоначально использовали телетайпы для диалога с оператором. Постепенно телетайпы уступили место текстовым видеотерминалам, сохраняя интерфейс токовой петли. В 1980-х стандарт RS-232 окончательно заменил токовую петлю.

Принципы работы

Стандарт цифровой токовой петли использует отсутствие тока как значение SPACE (низкий уровень, логический ноль) и наличие сигнала — как значение MARK (высокий уровень, логическая единица). Отсутствие сигнала в течение длительного времени интерпретируется как состояние BREAK (обрыв линии). Данные передаются старт-стопным методом, формат посылки совпадает c RS-232, например 8-N-1: 8 бит, без паритета, 1 стоп-бит.

Токовая петля может использоваться на значительных расстояниях (до нескольких километров). Для защиты оборудования применяется гальваническая развязка на оптоэлектронных приборах, например оптронах.

Из-за неидеальности источника тока, максимально допустимая длина линии (и максимальное сопротивление линии) зависит от напряжения, от которого питается источник тока. Например при типичном напряжении питания 12 вольт сопротивление не должно превышать 600 Ом.

Источник тока может располагаться в приёмном или передающем конце токовой петли. Узел с источником тока называют активным. В зависимости от конструкции как передатчик, так и приёмник, могут быть либо активными (питать токовую петлю), так и пассивными (питаться от токовой петли).

Для компьютеров семейства ДВК по умолчанию принимается, что передатчик — активный, приёмник — пассивный.

Стандартизация

Стандарт ИРПС/IFSS (ОСТ 11 305.916-84) использует токовую петлю 20 мА для передачи данных. Этот стандарт широко применялся в компьютерах, выпущенных в СССР и странах СЭВ до 1990-х годов. Например ДВК, Электроника-60, Электроника Д3-28, СМ ЭВМ и т. д. Физическое исполнение разъемов ИРПС в стандарте не закреплено, что породило массу вариантов. Часто употребляется разъём СНО53-8-2.

За рубежом токовая петля (Current Loop) специфицирована в стандартах IEC 62056-21 / DIN 66258.

MIDI (Musical Instrument Digital Interface) использует стандарт токовой петли на 5-штырьковом разъеме DIN 41524 со скоростью 31,25 кбит/с.

Для компьютеров IBM PC и IBM PC XT имелась плата IBM Asynchronous Communications Adapter, поддерживающая последовательную передачу по RS-232 или токовой петле. Для передачи сигналов токовой петли используются незадействованные контакты на разъеме DB25. В более поздних разработках остался только RS-232.

Протокол HART

Это развитие протокола Fieldbus, массово применяемое в промышленности. Подосновой становится токовая петля 4-20 мА, а значит, может использовать витые пары, оставшиеся от морально устаревших протоколов. Поначалу стандарт считался укзоспециализированным связным интерфейсом, но в 1986 году вышел на всеобщее обозрение. Передача по HART идёт полными пакетами, имеющими состав:

  1. Преамбула – 5-20 байт. Служит для синхронизации и определения несущей.
  2. Старт-байт – 1 байт. Указывает номер хозяина шины.
  3. Адрес – от 1 до 5 байт. Присваивается хозяину, слуге и служит специальным признаком пакетного режима.
  4. Расширение – от 0 до 3 байт. Его длина указывается в старт-байте.
  5. Команда – 1 байт. То, что слуга должен исполнить.
  6. Число байтов данных – 1 байт. Размер поля данных в байтах.
  7. Данные – от 0 до 255 байтов. Данные, помогающие расшифровать порядок действий.
  8. Проверочная сумма – 1 байт. Содержит результат логической операции XOR для всех байтов, кроме стартового и заключительного в блоке данных.

Разумеется, пакетная структура характерна для цифровых устройств, нуждается в расшифровке для правильного исполнения команды.