Тот самый закон Лоренца
Эксплуатация этого двигателя схожа с принципом работы ударного униполярного генератора. Однополярный двигатель приводится в действие силой Лоренца. Проводник с током, текущим через него, когда он помещен в магнитное поле и перпендикулярен ему, ощущает силу в направлении, перпендикулярном как магнитному полю, так и току. Эта сила обеспечивает оборотный момент вокруг оси вращения.
Поскольку последняя параллельна магнитному полю, а противоположные магнитные поля не меняют полярность, для продолжения вращения проводника коммутация не требуется. Эту простоту легче всего достичь с помощью однооборотных конструкций, что делает гомополярные двигатели непригодными для большинства практических применений.
Как и большинство электромеханических машин (вроде униполярного генератора Неггерата), гомополярный двигатель является обратимым: если проводник поворачивается механически, то он будет работать как гомополярный генератор, создавая напряжение постоянного тока между двумя выводами проводника.
Постоянный ток является следствием гомополярной природы дизайна. Гомополярные генераторы (HPG) были тщательно исследованы в конце 20-го века в качестве источников постоянного тока низкого напряжения, но с очень высоким током, и достигли некоторого успеха в питании экспериментальных рельсовых пушек.
Плюсы и минусы
Плюсы: независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель. Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)
Ток через конденсатор идет плавно
Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно
На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.
Теоретические основы
Эфир и теория относительности
Дошедшие до нас исторические факты свидетельствуют о том, что исследованием эфира занималось большинство известных науке ученых. Под термином «эфирный» обычно понималось не до конца понятное полевое образование типа Абсолютной Пустоты, заполняющей собой все свободное пространство между атомами и молекулами. Ситуация несколько изменилась лишь после того, как А. Эйнштейн опубликовал свои теоретические исследования по специальной теории относительности с выводами об искривлении пространства и относительности времени.
После этого все идеи о существовании эфира были поставлены под сомнения, поскольку в свете последних данных представить себе искривлённое пространство в отсутствие материального носителя было невозможно. К тому же «Специальная теория относительности» никоим образом не могла объяснить эффекты с трансформацией массы и других величин при изменении скорости перемещения материальных объектов в эфире.
Игнорирование выводов А.Эйнштейна
Несмотря на длительные споры теоретиков с представителями точных наук, основательно подзабытый «эфирный» аспект с течением времени стал снова обращать на себя внимание исследователей. Только с его помощью хоть как-то можно было объяснить наличие так называемой «темной материи», а также пресловутые торсионные поля Акимова и ряд других носителей скрытой энергии. Поскольку практического обоснования всех этих эффектов никогда не приводилось, большинство любителей довольствовалось их реальными проявлениями в виде самодельных генераторов электромагнитных излучений
Первые разработки были реализованы в своё время великим сербским учёным Николой Тесла (общий вид объекта его изобретения приведён на фото ниже)
Поскольку практического обоснования всех этих эффектов никогда не приводилось, большинство любителей довольствовалось их реальными проявлениями в виде самодельных генераторов электромагнитных излучений. Первые разработки были реализованы в своё время великим сербским учёным Николой Тесла (общий вид объекта его изобретения приведён на фото ниже).
Благодаря открытиям этого овеянного легендами человека, удалось добиться определённых успехов в создании генераторов свободной энергии и подготовке соответствующего теоретического обоснования их функционирования.
Объяснение эффектов Н.Тесла
Существует множество разъяснений э/м эффектов Тесла, которые определяют их как разновидность полевой структуры, образующейся при прохождении через проводник высокочастотного электрического сигнала.
При колебаниях тока в контуре, например, энергия из эфира сначала закачивается в него, а потом выталкивается наружу, что вызывает распространение э/м волн. Одновременно учитывалось, что величина поля, создаваемого вокруг проводника с током, пропорциональна квадрату его амплитуды. С теоретической точки зрения такое явление объяснялось тем, что волнообразное колебательное движение заряженных частиц вызывает образование поверхностных токовых завихрений, наводящих высокочастотные поля.
Дополнительная информация. В действительности их происхождение связано с кинетической природой происходящих процессов (точнее с высокой частотой генерируемых колебаний).
Исходя из предложенных разъяснений, можно представить теоретическое обоснование в виде следующей аналогии:
- Движение в эфире в чём-то очень схоже с перемещением жидкости в трубе с незаполненными водой отводами, из-за быстрого движения которой в ней создаётся некоторое разряжение;
- Пониженное давление приводит к эффекту втягивания посторонних частиц жидкости из примыкающих отводов (это соответствует закачке энергии э/м поля из эфира);
- При резком торможении потока частиц будет наблюдаться их выплеск наружу и восстановление давления внутри трубы;
- Последний эффект соответствует искровому пробою электрического тока через разрядник, приводящему к образованию мощного всплеска энергии с ударными свойствами.
Он и является причиной формирования значительных по напряжённости э/м полей с уникальными характеристиками, распространяющимися на большие расстояния.
Данная трактовка может считаться достаточно убедительным объяснением того эффекта, который уже много лет наблюдается в генераторах Тесла и подобных им устройствах, обеспечивающих практически бесплатное получение энергии.
Конструкция и сборка
Трансформатор Тесла был запатентован в 1896 г. и по своей конструкции прост для исполнения. Он включает в себя:
- Первичную катушку с обмоткой из медной жилы сечением от 6 мм², в количестве достаточном для 5-7 витков.
- Вторичную катушку из диэлектрического материала и провода диаметром до 0,5 мм и длиной достаточной для 800-1000 витков.
- Полусферы разрядника.
- Конденсаторов.
- Защитного кольца из медной жилы, как на первичной обмотке трансформатора.
Особенность прибора заключается в том, что его мощность не зависит от мощности питающего источника. Важнее физические свойства воздуха. Устройство может создавать колебательные контуры различными методами:
- с использованием разрядника искрового промежутка;
- с помощью генератора колебания на транзисторах;
- на лампах.
Для изготовления трансформатора Тесла своими руками потребуется:
- Для первичной обмотки — 3 м тонкой медной трубки диаметром 6 мм либо медная жила того же диаметра и длины.
- Для сборки вторичной обмотки необходима ПВХ труба диаметром 5см и длиной около 50 см и резьбовой фитинг ПВХ к ней. Также необходим медный, покрытый лаком или эмалью, провод диаметром 0,5 мм и длиной 90 м.
- Металлический фланец с внутренним диаметром 5 см.
- Различные гайки, шайбы и болты.
- Разрядник.
- Гладкая полусфера для терминала.
- Конденсатор можно изготовить самостоятельно. Для него потребуются 6 стеклянных бутылочек, поваренная соль, рапсовое или вазелиновое масло, алюминиевая фольга.
- Потребуется источник питания, выдающий 9кВ при 30мА.
Watch this video on YouTube
Схема трансформатора Тесла проста в реализации. От трансформатора отходят 2 провода с подключенным разрядником. К одному из проводов подключаются последовательно соединенные конденсаторы. В конце расположена первичная обмотка. Отдельно располагается вторичная катушка с терминалом и заземленным кольцом защиты.
Описание того, как собрать катушку Тесла в домашних условиях:
- Изготавливают вторичную обмотку, предварительно закрепив край провода на конце трубы. Наматывать следует равномерно, не допуская обрыва провода. Между витками не должны присутствовать зазоры.
- Закончив, оберните обмотку в верхней и нижней частях малярной лентой. После этого покройте обмотку лаком или эпоксидной смолой.
- Подготовьте 2 панели для нижнего и верхнего оснований. Подойдет любой диэлектрический материал, лист фанеры или пластика. Установите по центру нижнего основания металлический фланец и закрепите его болтами так, чтобы между нижним и верхним основаниями осталось место.
- Подготовьте первичную обмотку, скрутив ее в спираль и закрепив на верхнем основании. Просверлив в нем 2 отверстия, выведите концы трубки в них. Закреплять ее следует так, чтобы исключить соприкосновение обмоток и при этом соблюсти расстояние между ними в 1 см.
- Для изготовления разрядника потребуется поместить 2 болта напротив друг друга в деревянную рамку. Расчет сделан на то, что при движении они будут играть роль регулятора.
- Конденсаторы изготавливаются следующим образом. Стеклянные бутылки обматывают фольгой и заливают в них соленую воду. Ее состав для всех бутылок должен быть одинаковым — 360 г на 1л воды. Пробивают крышки и вставляют в них провода. Конденсаторы готовы.
- Соединяют все узлы по схеме, описанной выше. Обязательно заземляют вторичную обмотку.
- Итоговое количество в первичной обмотке должно составить 6,5 витка, во вторичной — 600 витков.
Описанная последовательность действий дает представление о том, как сделать трансформатор Тесла самому.
Где купить и как не попасть впросак?
Любые новые генераторы (а магнитные так и подавно) стоят немалых денег, поэтому перед его покупкой встает вопрос: как купить подешевле, но качественную модель? В последнее время модно покупать товары из Китая, которые славятся своей дешевизной и сравнительно терпимым качеством. Генераторы или комплектующие для них также можно заказать заграницей, однако риски при этом велики:
- оплачивать покупку приходиться до того, как будешь держать ее в руках;
- не факт что написанное на сайте полностью соответствует тому, что придет в посылке;
- посылка может затеряться, а деньги никто не вернет.
Как видим экономия вполне ложная. Другой вариант – покупка от производителя. Но и тут есть свои заморочки. Не зная всех тонкостей конструкции и особенностей работы агрегата, опытный продавец-маркетолог может «втюхать» такой генератор, который не будет отвечать требованиям. Не зря же говорится, если вооружен – значит защищен! Поэтому, перед тем как купить индукционный магнитный генератор, нужно:
- изучить рынок производителей, выявив несравненных лидеров (можно найти отзывы в интернете тех людей, которые пользуются подобными установками);
- рассчитать необходимую мощность, а также габариты – это поможет сэкономить на стоимости, выбирая генератор для определенных нужд (чем он мощнее, тем дороже и больше места занимает);
- удостовериться в наличии гарантийного талона выбранной модели, а также листа испытаний, подтверждающего его качество (не лишним также будет его апробация в месте покупки).
Как соорудить генератор свободной энергии своими руками?
Генераторы создаются на основе следующих комплектующих и приспособлений:
- Элемент питания и резистор номиналом 2,2 КОМ. Его включать в чертёж обязательно.
- Ферритовое колечко любой магнитной проводимости.
- Конденсатор с ёмкостью 0,22 мкф, рассчитанный для напряжения до 250 Вольт.
- Толстая медная шина, чей диаметр — около 2 миллиметров. В дополнение берут тонкие медные провода в эмалевой изоляции, с диаметром 0,01 мм. Тогда и радиантные установки дают результат.
- Пластиковая или картонная трубка, чей диаметр составляет 1,5-2,5 сантиметра.
- Любой транзистор, обладающий подходящими параметрами. Хорошо, если в базовой комплектации, помимо генератора, будет присутствовать дополнительная инструкция. Иначе невозможно заняться реализацией практических схем генераторов свободной энергии с самозапиткой.
Интересно. В случае с дополнительными развязками между питающей и высоковольтной цепями применяют специальный входной фильтр. Можно не ставить такое приспособление, а подавать напряжение напрямую.
Для сборки можно использовать плату из стеклотекстолита, либо другое основание, обладающее похожими характеристиками. Главное — чтобы поверхность вмещала радиатор со всеми необходимыми приспособлениями. На пластиковой трубке наматывают обе катушки таким образом, чтобы одна размещалась внутри другой. Виток к витку наматывают высоковольтную обмотку, тоже расположенную внутри. Иногда этого требуют и самодельные импульсные безтопливные генераторы энергии.
Форма генерируемых импульсов обязательно проверяется на работоспособность, когда сборка закончена. Для этого берут осциллограф, цифровой или электронный
При настройке следует обращать внимание только на один важный параметр — наличие крутых фронтов, которыми отличается генерируемая последовательность прямоугольных контактов
Безтопливные генераторы
Как сделать генератор
В настоящее время существует два способа создания безтопливного генератора, а именно мокрый, его еще называют масляный и сухой.
При создании генератора мокрым способом понадобиться аккумуляторная батарея. В то время как генератор, работающий по принципу сухого метода, обходится без аккумулятора.
Мокрый метод
Для того чтобы собрать мокрый безтопливный генератор потребуются следующие комплектующие детали: Аккумуляторная батарея необходима для накопления в ней энергии и ее хранения.
Трансформатор – используют для создания постоянного тока.
Усилитель необходим для увеличения подачи тока. Это необходимо из-за того что аккумуляторная батарея не способна воспроизводить необходимую мощность, как правило ее максимальная мощность равна 12 или 24 В.
Зарядное устройство обеспечивает бесперебойную работу генератора.
Схема сборки генератора
Трансформатор переменного тока подключают к постоянной сети, к аккумуляторной батарее, а затем к усилителю мощности. После чего необходимо добавить в схему зарядное устройство. Завершает этап сборки датчик расширения, который подключается обратно в батарею.
Сухой метод
Принцип работы сухого безтопливного генератора основан на наличии конденсаторов. Данный вид получения энергии в настоящее время является наиболее совершенным и работоспособным. Так как беспрерывно и без подзарядки он может работать на протяжении 3 лет.
Схема сухого генератора
Генератор имеет простую схему, которая состоит из пары катушек с конденсаторами, трансформаторов и магнита. Особенностями данного генератора является то что катушки должны быть настроены в резонанс друг с другом. А сама модель должна быть ориентирована строго с севера на юг.
Создание сухого безтопливного генератора начинают с создания катушек. Для этого следует взять медный провод сечением 1,5 мм, его следует намотать на деревянные палочки, которые закреплены на расстоянии 500 мм одна от одной. Следует помнить что количество витков на обеих палочках должно быть равным (например 12 витков).
Второй слой витков следует делать проводом с большим сечением (например 2,5 мм). Этот провод, как и предыдущий, укладывается на две катушки, но уже по шесть витков на каждую. Далее рекомендуют взять еще один провод, но другого цвета и сечения 2,5 мм и сделать еще 6 витков
Очень важно чтобы количество мотков и направление намотки было одинаковым
Далее готовые катушки закрепляются на подвижном механизме. Следует помнить, что при перемещении катушки должны ходить без усилий, перекосов и напряжения. Далее можно приступить к сборке всего механизма. Перед катушками закрепляют магнитный резонатор (магнит), далее следует взять конденсаторы не менее чем 500 мкФ и поместить по одному конденсатору внутри катушек и по два конденсатора с внешней стороны. Последним присоединяем трансформатор. Все детали соединяются между собой при помощи пайки.
Первый или нет? Какая разница!
Давайте попробуем как можно более объективно оценить труды Николы Теслы и понять, какую важную роль он сыграл во второй мировой промышленной революции начала XX века.
Условно можно разбить трудовую жизнь Теслы на два периода: до пожара в его лаборатории в Нью-Йорке в марте 1895 года и после.
До этого события изобретения Теслы уверенно можно назвать крайне эффективными, полезными и остроумными. Многие достоверно подтверждены патентами и статьями
Здесь очень важно попытаться представить, в каком состоянии пребывало научно-инженерное общество того времени. В XIX веке открытия Эрстеда, Ампера, Ома, Фарадея, Максвелла и других ученых привело многих к четкому осознанию, что за электромагнетизмом будущее
Огромное количество блестящих умов по всему миру было занято исследованием применения электрических и магнитных явлений. Если в одной стране один человек доходил до какого-нибудь технического открытия, то в другой точке земного шара в это же время нечто похожее вполне мог сконструировать другой. Поэтому споры о том, кто был первым, не утихают и по сей день. Хотя почему бы просто не определить, что первыми были несколько людей? Разве это умаляет их заслуги?
Фото: East News
Так многократно случалось впоследствии и с наследием Николы Теслы. Например, достоверно известно, что в 1891 году он продемонстрировал на практике применение радиосвязи с помощью передающего устройства с резонанс-трансформатором. Это подтверждает и знаменитая радиоуправляемая модель лодки Теслы. Сложно представить, но еще в конце XIX века человечество увидело дистанционное управление модели катера. Конечно, возникают споры, кто был первым — Тесла или русский физик Александр Попов, создавший радио примерно в то же время.
Также достоверно известно о факте создания Теслой в 1890-х годах «лучевых трубок», питаемых от резонансных трансформаторов его собственной конструкции и испускающих, как теперь они называются, рентгеновские лучи. До сих пор обсуждается вопрос приоритета столь выдающегося открытия, за которое Вильгельм Рентген в 1901 году получил Нобелевскую премию. Однако сам Тесла не претендовал на открытие.
Кроме того, Тесла, будучи сторонником теории существования электроэфирной среды, исследовал возможность создания каналов в эфирной среде, по которым можно было бы передавать огромные электрические импульсы. По всем признакам эта идея опередила свое время почти на полвека. Теперь подобное явление называется плазменным шнуром. Однако никаких свидетельств о каком-либо четком и обоснованном результате Теслы нет, лишь об идее и пробных экспериментах.
То же самое касается и известных домыслов о познании шаровых молний Теслой. На уровне разговоров и интервью упоминаний много. По словам самого Теслы, его не интересовало это понятное ему явление, так как оно являлось побочным атрибутом при создании мощных искровых разрядов, которыми Тесла надеялся передавать электричество без проводов. Тем не менее явление ни тогда, ни сейчас однозначно не объяснено.
12 октября 1887 года — важная дата в карьере Теслы. В этот день он опубликовал строгое научное описание сути явления вращающегося магнитного поля. Это важнейшее открытие способствовало тому, что впоследствии именно в честь Николы Теслы назвали единицу измерения магнитной индукции в международной системе единиц СИ.
Работая на Вестингауза, Тесла запатентовал множество различных применений самых разных многофазных систем переменного тока. До изобретения так называемого асинхронного двигателя переменный ток не находил широкого применения, поскольку не мог использоваться в ранее существовавших электродвигателях, работающих на постоянном токе.
Что такое БТГ
Генераторы – это приборы для выработки электрического тока. Они состоят из статора (неподвижной детали) и вращающегося ротора. Именно для работы этого устройства автомобильные и другие двигатели сжигают в своих камерах бензин или солярку, выделяя ядовитые пары и выхлопные газы, отравляя атмосферу.
Бестопливный генератор не потребляет, а добывает энергию из, так называемых, возобновляющихся и бесплатных природных источников: из ветра, из воды, из земли и воздуха.
Разработки в этом направлении велись исследователями еще в 19 веке. Создано несколько десятков отличающихся друг от друга технологий. Среди самых перспективных направлений специалисты называют следующие:
- установки, использующие силы постоянных магнитных полей;
- реактивные полевые двигатели;
- использование солнечного тепла;
- устройства, подобные трансформатору Тесла, генератору Капанадзе;
- приборы, работающие на энергии резонансного разложения воды;
- малые индивидуальные ветровые установки;
- монополярные магнитные двигатели.
Есть много других разработок, основанных на использовании бестопливных технологий. Наш информационный мир дает огромные возможности для получения знаний. Немного старания – и человечеству перестанут грозить кризисы и истощение топливных запасов. Мировая реформа энергетики не за горами!
Изготовление катушки Тесла своими руками в домашних условиях
Проектирование и создание устройства не представляет сложности для людей, знакомых с принципами электротехники и электричества. Однако даже новичку под силу будет справиться с этой задачей, если провести грамотные расчёты и скрупулёзно следовать пошаговой инструкции. В любом случае до начала работ следует обязательно ознакомиться с правилами техники безопасности для работ с высоким напряжением.
Схема
Катушка тесла представляет собой две катушки без сердечника, посылающих большой импульс тока. Первичная обмотка состоит из 10 витков, вторичная — из 1000. Включение в схему конденсатора позволяет снизить до минимума потери искрового заряда. Выходная разность потенциалов превышает миллионы вольт, что позволяет получать эффектные и зрелищные электрические разряды.
Перед тем как взяться за изготовление катушки своими руками, необходимо изучить схему её строения
Инструменты и материалы
Для сбора и последующего функционирования катушки Тесла понадобится подготовить следующие материалы и оборудование:
- трансформатор с выходным напряжением от 4 кВ 35 мА;
- болты и металлический шарик для разрядника;
- конденсатор с рассчитанными параметрами ёмкости не ниже 0,33 µF 275 В;
- ПВХ труба диаметром 75 мм;
- эмалированная медная проволока сечением 0,3–0,6 мм — пластиковая изоляция предотвращает пробой;
- полый металлический шар;
- толстый кабель или трубка из меди сечением 6 мм.
Пошаговая инструкция по изготовлению катушки
В качестве источника питания также можно использовать мощные батареи
Алгоритм изготовления катушки состоит из следующих этапов:
- Подбор источника питания. Оптимальный вариант для новичка — трансформаторы для неоновых вывесок. В любом случае выходное напряжение на них не должно быть ниже 4кВ.
- Изготовление разрядника. От качества этого элемента зависит общая производительность устройства. В самом простом случае это могут быть вкрученные на расстоянии в несколько миллиметров друг от друга обыкновенные болты, между которыми установлен металлический шарик. Расстояние подбирают таким образом, чтобы искра пролетала в том случае, когда только разрядник подключён к трансформатору.
- Расчёт ёмкости конденсатора. Резонансную ёмкость трансформатора умножают на 1,5 и получают искомую величину. Конденсатор с заданными параметрами разумнее приобрести готовый, поскольку при отсутствии достаточного опыта сложно собрать этот элемент самостоятельно, чтобы он работал. При этом могут возникнуть сложности с определением его номинальной ёмкости. Как правило, при отсутствии большого элемента конденсаторы катушки представляют собой сборку из трёх рядов по 24 конденсатора в каждом. При этом на каждом конденсаторе должен быть установлен гасящий резистор 10 МОм.
-
Создание вторичной катушки. Высота катушки равна пяти её диаметрам. Под эту длину подбирают подходящий доступный материал, например, поливинилхлоридную трубу. Её обматывают медной проволокой в 900–1000 витков, а затем покрывают лаком для сохранения эстетичного внешнего вида. К верхней части прикрепляют полый шар из металла, а нижнюю часть заземляют. Желательно продумать отдельное заземление, так как при использовании общедомового велика вероятность выхода из строя других электроприборов. Если готовый металлический шар отсутствует, то его можно заменить другими аналогичными вариантами, выполненными самостоятельно:
- обернуть пластиковый шар фольгой, которую следует тщательно разгладить;
- обмотать алюминиевой лентой гофротрубу, свёрнутую в круг.
- Создание первичной катушки. Толщина трубки препятствует резистивным потерям, с увеличением толщины уменьшается её способность к деформированию. Поэтому сильно толстый кабель или трубка будут плохо сгибаться и трескаться в местах сгибов. Шаг между витками выдерживают в 3–5 мм, количество витков зависит от общих габаритов катушки и подбирается экспериментально, также как и место подключения устройства к источнику питания.
- Пробный запуск. После выполнения первичных настроек запускают катушку.
Простая схема генератора Теслы
Электроника для самоделок вкитайском магазине.
Для сборки схемы необходимы:
1. Медный эмалированный провод толщиной 0,1-0,3 мм, длиной 200 м.
2. Пластиковая труба диаметром 4-7 cм, длиной 15 см для каркаса вторичной обмотки.
3. Пластиковая труба диаметром 7-10 cм, длиной 3-5 см для каркаса первичной обмотки.
4. Радиодетали: транзистор D13007 и охлаждающий радиатор для него; переменный резистор на 50 кОм; постоянный резистор на 75 Ом и 0,25 вт; блок питания напряжением на выходе 12-18 вольт и током 0,5 ампера; 5. Паяльник, оловянный припой и канифоль.
https://youtube.com/watch?v=9xN_S8-ZYbY
Подобрав нужные детали, начните с намотки катушки. Наматывать следует на каркас виток к витку без перехлёстов и заметных пробелов, примерно 1000 витков, но не менее 600. После этого нужно обеспечить изоляцию и закрепить намотку, лучше всего для этого использовать лак, которым покрыть обмотку в несколько слоёв.
Для первичной обмотки (L1) используется более толстый провод диаметром 0,6 мм и более, обмотка 5-12 витков, каркас для неё подбирается хотя бы на 5мм толще вторичной обмотки.
Далее соберите схему, как на рисунке выше. Транзистор подойдет любой NPN, можно и PNP, но в этом случае необходимо поменять полярность питания, автор схемы использовал BUT11AF, из отечественных, которые ничем не уступают, хорошо подходят КТ819, КТ805. Для питания качера – любой блок питания 12-30В с током от 0,3 А.
Генератор или вечный двигатель?
Большинство ученых отрицает возможность создания генератора на свободной энергии. На это следует возразить тем, что даже в прошлом многие современные достижения также казались невозможными. Дело в том, что наука имеет множество областей, где исследования проведены далеко не полностью. Это особенно касается вопросов физических полей и энергии. Те виды энергии, которые нам знакомы, можно ощутить и измерять. Но ведь нельзя отрицать наличие неизвестных видов только на том основании, что пока не существует методов и приборов для их измерения и преобразования.
Для скептиков любые предложения генераторов, схемы и идеи, основанные на преобразовании свободной энергии, кажутся вечными двигателями, которые работают, не потребляя энергии, да еще способны вырабатывать излишек уже в виде известной энергии, тепловой или электрической.
Здесь не идет речь о вечных двигателях. На самом деле вечный генератор использует свободную энергию, которая в настоящее время пока еще не имеет внятного теоретического обоснования. Чем раньше считался свет? А сейчас он используется для выработки электрической энергии.
Генератор на свободной энергии
https://youtube.com/watch?v=lHAzpcljE4A
https://youtube.com/watch?v=fJEykH3KOI8
https://youtube.com/watch?v=mvVN_xCUXHg