Перспективные направления усовершенствования инфракрасных светодиодов
Производители регулярно сталкиваются со следующей проблемой: для создания мощного излучения требуется большой кристалл, но и цена такого кристалла увеличивается. Соединение вместе нескольких маленьких элементов увеличивает нерабочую площадь кристалла, ведь боковое излучение уходит в сторону. Большая мощность излучения требует много энергии, которая, в свою очередь, превращается в тепло. Итогом является повышение температуры и возникает опасность разрушения рабочей части светодиода.
Ученые и производители предлагают следующие направления решения этих проблем:
- достигнут психологический порог площади кристалла до 1 мм2 , что дает возможность значительного увеличения силы тока из-за уменьшения сопротивления в результате нагрева.
- увеличение площади поверхности кристалла увеличивает соотношение излучаемой площади к непрозрачной части;
- разрабатываются и внедряются более совершенные отражатели, имеющие более высокий КПД сбора и концентрации излучение от боковых граней;
- разрабатываются оптические системы с более высоким коэффициентом преломления, позволяющим в оптимальном режиме собирать воедино и направлять под нужным углом прямое и боковое излучения.
Устройство и особенности ИК-светодиодов
Теоретически мы разобрались, чем отличаются инфракрасные светодиоды от обычных светоизлучающих. Но как это достигается на практике? Разберемся в принципе работы и тех, и других.
Некогерентные светодиоды
Конструктивно прибор представляет собой «слоеный пирог», состоящий из двух типов полупроводников: n и p. При прохождении тока через этот pn-переход отрицательный заряд электронов (n) соединяется с ионами положительно заряженных дырок (p). В этот момент выделяется энергия, и мы видим излучение света.
Принцип работы некогерентного светодиода
Но, как мы знаем, светодиоды могут светиться разным цветом, т. е. излучать волны разной длины – от ультрафиолета до инфракрасного спектра. Почему? На спектр излучения кристалла влияет тип материала, из которого он изготовлен. К примеру, светодиоды на основе нитрида алюминия работают в ультрафиолетовом спектре, фосфид галлия даст красный цвет, а приборы на основе арсенида галлия излучают в инфракрасном спектре.
Осталось разобраться, почему они называются некогерентными. Любой светодиод излучает волну не строго определенной частоты, а захватывает небольшой участок спектра. Участок этот не особенно велик и лежит в одном цветовом диапазоне, но он есть.
То есть если полупроводник светится, скажем, синим, то этот цвет не чисто синий с определенной, строго заданной длиной волны, а просто спектр излучения прибора лежит в синем диапазоне. К примеру, устройства на основе селенида цинка излучают волны длиной от 450 до 500 нм, но мы все равно видим синий цвет. Это хорошо видно по нижеприведенной таблице спектров.
Таблица цветовых спектров
То же касается светодиодов и другого цвета свечения, включая инфракрасные. Для того чтобы получить излучение строго заданной частоты, используется совершенно иной принцип, а сами приборы, которые так работают, получили название полупроводниковых лазеров.
Лазеры – когерентные светодиоды
Полупроводниковый лазер представляет собой все тот же «слоеный пирог», только размеры этого «пирога» имеет строго заданные параметры, совпадающие с длиной волны определенного спектра или кратные ей. При этом торцы кристалла отполированы до зеркального блеска, а нижняя и верхняя его части непрозрачны.
При подаче на кристалл напряжения происходит то же, что и в обычном светодиоде: он начинает излучать спектр волн, лежащих в некотором диапазоне. Излучение же, направленное внутрь, начинает отражаться от полированных стенок кристалла. Причем длина волны, на которую настроен кристалл, будет отражаться многократно, остальные частоты начнут затухать, накладываясь друг на друга в разных фазах.
Проходя вдоль кристалла, являющегося, по сути, резонатором, излучение определенной длины будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Эта фаза называется процессом накачки лазера. Как только усиление превысит потери, начнётся лазерная генерация.
Принцип работы полупроводникового лазера
Технические характеристики
На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.
Рабочая длина волны
– основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.
Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.
Номинальный прямой ток
– постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.
Максимальный импульсный ток
– ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.
Прямое напряжение
– падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.
Обратное напряжение
– максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.
ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.
Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных. Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки
О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.
Читайте так же
Сегодня в радиоэлектронике имеются самые разнообразные изделия, применяемые для создания качественной и эффективной подсветки. Одним из таких изделий является инфракрасный тип диода.
Чтобы использовать его для создания подсветки, необходимо знать не только то, где они применяются, но и их особенности. Разобраться в данном вопросе поможет эта статья.
Технические характеристики
Так как инфракрасное излучение невидно зрению человека и диапазон его длин волн распространен достаточно широко – 0,75-2000 микрометров – то характерный для обычных светодиодов набор технических параметров не применяется для них. Вместо этого для лед-элементов, работающих в ИК-сегменте спектра, используются следующие главные обозначения их свойств:
- Мощность в единицу времени (Вт/ч), либо дополнительно указывается на какую площадь излучателя она приходится.
- Интенсивность потока в пределах пространственного/телесного угла, выражаемая в Вт/ср (стерадианах).
Однако далеко не всегда требуется постоянное инфракрасное излучение, поэтому для светодиодов конкретного применения указываются характеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.
Помимо выше рассмотренных специфических параметров, для инфракрасных светодиодов характерны и общие показатели эксплуатации, также указываемые в паспортных данных:
- Диапазон длин волн.
- Номинальный прямой ток.
- Наивысший импульсный ток.
- Величина падения напряжения.
- Значение обратного напряжения.
Особенности диодов, работающих в инфракрасном диапазоне
Инфракрасные светодиоды (сокращенно называются ИК диоды) — это полупроводниковые элементы электронных схем, которые при прохождении через них тока излучают свет, находящийся в инфракрасном диапазоне.
Мощные светодиоды (например, лазерный вид) инфракрасного спектрального диапазона производятся на базе квантоворазмерных гетероструктур. Здесь применяется лазер FP-типа. В результате чего мощность светодиодов стартует с отметки 10мВ, а ограничивающим порогом служит 1000мВ. Корпуса для данного рода изделий подходят как 3-pin-типа, так и HHL. Излучение в результате этого оказывается в спектре от 1300 до 1550нм.
Структура ИК-диода
В результате такой структуры лазерный мощный диод служит отличным источником излучения, благодаря чему его часто используют в волоконно-оптической системе передачи информации, а также во многих других сферах, о которых речь пойдет немного ниже.
Лазерный инфракрасный тип диода является источником мощного и концентрированного лазерного излучения. В его работе применяется, соответственно, лазерный принцип работы.
Мощные диоды (лазерный тип) имеют следующие технические характеристики:
Графическое отображение телесного угла в 1 ср
- такие светодиоды способны генерировать волны, находящиеся в диапазоне 0,74- 2000 мкм. Этот диапазон служит той гранью, когда излучение и свет имеют условное деление;
- мощности генерируемого излучения. Этот параметр отражает количество энергии в единицу времени. Такая мощность дополнительно привязывается к габаритам излучателя. Данный параметр измеряется в Вт с единицы имеющейся площади;
- интенсивность излучаемого потока в рамке сегмента объемного угла. Это достаточно условная характеристика. Она связана с тем, что с помощью оптических систем испускаемое диодом излучение собирается и потом направляется в требуемую сторону. Данный параметр измеряется в ВТ на стерадианы (Вт/ср).
В некоторых ситуациях, когда нет необходимости в наличии постоянного потока энергии, а достаточны импульсные сигналы, вышеописанное строение и характеристики позволяют увеличить мощность энергии, излучаемой элементом радиосхемы, в несколько раз.
Модернизация — ремонт
На закате СССР появились и были очень популярны отечественные полупроводниковые телевизоры серии «УСЦТ». Некоторые из них и сейчас в строю. Особенно долговечными были телевизоры с размером экрана 51 см по диагонали (кинескоп был весьма надежным). Конечно, они уже совсем не отвечают современным требованиям, но как «дачный вариант» еще вполне пригодны.
Как сделать простой ИК пульт для телевизора
Как-то, от нечего делать, появилось желание усовершенствовать старенькую, уже давно «дачную» «Радугу- 51ТЦ315», дополнив её системой дистанционного управления. Сейчас уже приобрести «родной» модуль невозможно, поэтому было решено сделать упрощенную однокомандную систему, позволяющую хотя бы переключать программы «по кольцу». Микроконроллеры и спец, микросхемы сразу были отвергнуты по причине нерентабельности, и система была сделана из того, что имелось в наличии.
А именно, интегральный таймер 555, ИК светодиод LD271, интегральный фотоприемник TSOP4838, счетчик К561ИЕ9 и плюс еще по- мелочи. Схема ИК пульта управления показана на сайте . Он представляет собой генератор импульсов частотой 38 кГц, на выходе которого включен через ключ инфракрасный светодиод. Генератор построен на основе микросхемы «555», так называемого «интегрального таймера». Частота генерации зависит от цепи C1-R1, при налаживании подбором резистора R1 нужно установить на выходе микросхемы (вывод 3) частоту 38 кГц.
Прямоугольные импульсы частотой 38 кГц поступают на базу транзистора VT1 через резистор R2. Диоды VD1 и VD2 вместе с резистором R3 образуют схему контроля тока через ИК-светодиод HL1. При повышенном токе напряжение на R3 увеличивается, соответственно увеличивается и напряжение на эмиттере VT1. И когда напряжение на эмиттере приближается по величине к напряжению падения на диодах VD1 и VD2 происходит снижение напряжения на базе VT1 относительно эмиттера, и прикрывание транзистора.
Для чего нужен дополнительный резистор?
В свою очередь, резистор R1 (10 кОм) обеспечивает постоянный ток через выпрямительный диод, так что напряжение, подаваемое на приемник, не зависит в значительной степени от тока, потребляемого схемой. Ток, потребляемый этой схемой, сильно различается. Если светодиод не горит, TSOP31236 потребляет менее 1 мА. При включенном светодиоде потребление увеличивается на ~ 4 мА (немного, но все равно в 4 раза больше).
Диод D1 использовался в качестве редуктора напряжения питания, но для того, чтобы действовать в этой роли, через него должен протекать «значительный» ток, чтобы на нем могло образоваться напряжение ~ 0,7 В
Важно отметить, что он должен выполнять эту функцию должным образом (все время работы), даже когда TSOP ожидает ИК-сигнала, то есть при низком энергопотреблении
Что такое «значительный ток»? Это спорный вопрос. Он нигде не определен и зависит в основном от параметров кремниевого диода и температуры окружающей среды. Здесь мы предположили, что дополнительная нагрузка диода с током около 0,5 мА от резистора R1 будет постоянно обеспечивать «значительный ток». В результате на D1 всегда будет требоваться падение напряжения около 0,7 Вольт.
Без этого резистора схема тоже должна работать, но это более безопасное решение! |
Как подключить
Подключение инфракрасного светодиода ничем не отличается от подключения обычного светоизлучающего. И тот, и другой включаются в цепь постоянного тока через ограничивающий резистор, обеспечивающий номинальный рабочий ток прибора. Ну и не стоит забывать, что инфракрасный светодиод – прибор полярный, поэтому на его анод нужно обязательно подавать «плюс», а на катод – «минус». При этом место включения резистора в цепь роли не играет.
Простейшая схема подключения ИК-светодиода
Для того чтобы рассчитать номинал токоограничивающего резистора, необходимо знать:
- падение напряжения на светодиоде при прямом включении (есть в паспорте);
- номинальный рабочий ток светодиода (есть в паспорте);
- величину питающего напряжения.
Сам же расчет исключительно прост. Из напряжения питания вычитаем напряжение падения на полупроводнике и находим напряжение падения на резисторе:
U = Uпит. – Uпадения на светодиоде
Теперь рассчитываем номинал резистора, который обеспечит нужный нам ток через цепь, воспользовавшись законом Ома:
R = U/ I
где:
- R – искомое сопротивление резистора в Омах;
- U – падение напряжения на резисторе (см. первую формулу) в вольтах;
- I – номинальный ток через светодиод в амперах.
Если светодиод относительно мощный, то вместо резистора используется драйвер – электронный стабилизатор тока. Понадобится драйвер и в том случае, если питающее напряжение нестабильно.
Подключение светодиода через простейший драйвер, собранный на интегральном стабилизаторе
В нижней части рисунка указано соответствие номинала резистора необходимому току.
Сферы применения комплектующих элементов на основе инфракрасных светодиодов
Ученые и производственники не зря тратят столько сил на решение обозначенных выше проблем. Как отдельные приборы такие изделия практически не используются. Но они являются основными элементами оборудования, популярность которого растет быстрыми темпами. Именно этот рынок требует светодиоды с все более мощными выходными данными.
В первую очередь речь идет о системах, связанных с обеспечением работы визуальной техники в темное время суток. Рассмотрим ситуацию на примере приборов ночного видения. Чем мощнее сигнал, тем больше будет расстояние, с которого его отражение вернется для фиксации на приемной матрице. Но если в таких приборах еще можно использовать импульсы, то в системах инфракрасной подсветки видеокамер, где создаётся постоянный видеопоток, нужен непрерывный поток энергии.
И именно эти продукты диктуют высокий спрос на рыке, так как все больше проникают в повседневную жизнь. Для камер систем безопасности, видеорегистраторов автомобилей функция проведения съемки ночью уже не опция, а обычный рабочий режим.
Используют инфракрасные светодиоды в системах организации оптической связи, в телевизионных системах с электронно-оптическими преобразователями на основе пространственно-зарядковой связи, пультах дистанционного управления. Но эти рынки более узкие и не формируют основной спрос.
Другие сферы применения
Кроме фонариков и прожекторов, инфракрасный свет используют для видеокамер при недостаточной освещённости помещений; кассы, офиса, банка, склада, кладовой
Как дежурное освещение при видеонаблюдении, где не нужно привлекать внимание к объекту. Когда свет не должен мешать людям в кинотеатрах, театрах, ночных клубах, на автостоянках и дорогах (не ослепляет водителей)
Инфракрасный свет широко применяется в таких областях:
- медицина (улучшает обмен веществ, выводит избыточные жиры, добавляет двигательную энергию и др.);
- животноводство;
- тепловизоры;
- военная техника (система наведения, локация);
- электронная промышленность (дистанционное управление, оптическая связь);
- обогрев помещений;
- пищевая промышленность (сушка овощей, фруктов);
- астрономия;
- метеорология (измерение температуры объектов);
- научные исследования.
Интегрированные инфракрасные приемники
В продаже есть две основные группы элементов, чувствительных к инфракрасным лучам: фотодиоды и фототранзисторы. Интересно то, что оба этих элемента обычно выглядят так же, как обычные светодиоды. Так что будьте осторожны, не перепутайте их, так как визуально отличить их практически невозможно.
Однако использование этих основных элементов, при реализации тракта передачи, довольно затруднительно из-за помех со стороны окружающей среды. Поэтому производители электронных компонентов создали так называемые интегрированные инфракрасные приемники. Семейство приемников TSOP — это элементы, с которыми сталкивался почти каждый инженер- электронщик. Один из них находится в микросхеме TSOP31236.
TSOP31236 — инфракрасный приемник
Интегрированные инфракрасные приемники имеют специальные, полностью закрытые непрозрачные корпуса, но инфракрасное излучение без проблем проникает через такой корпус. Это одна из обработок, которые делают этот элемент устойчивым к помехам.
Внутри этого инфракрасного приемника находится довольно сложная схема, отвечающая за прием, фильтрацию и декодирование сигнала. Ниже приведена блок-схема из технической документации, показывающая (более или менее), что содержится в этом элементе.
Блок-схема TSOP31236
К счастью, нам не нужно вдаваться в подробности его структуры — любознательный найдет описание этих блоков позже в этой статье. Теперь стоит отметить, что внутри у нас есть приемный диод (который обозначен стрелками, ведущими к диоду, а не снаружи, как в случае светоизлучающих диодов), транзистор и ряд «схем», которые декодируют сигнал и проверяет его правильность.
Обзор популярных моделей
В выпуске фонарей и светильников инфракрасного спектра участвуют следующие торговые бренды:
- AZISHN,
- Tech Trends,
- KKMOON,
- EFOSE,
- Gadinan,
- UniqueFire,
- Smar.
Они выпускают разные подсветки, на любой цвет и вкус.
Модель AZISHN CCTV LEDS, перечислим его характеристики:
- λ = 850 nm;
- ИК — диоды 48IR — 4 шт.;
- наружный;
- водонепроницаемый;
- для камеры видеонаблюдения.
Прожектор KKMOON DC 12V, 12W, его характеристики:
- LED (96 шт.) — 850 nm;
- дальность — от 10 до 60 m;
- исполнение — IP65 (открытый, водонепроницаемый).
BEWARD – LIR6 — компактный источник света, его характеристики приведены ниже:
- исполнение — наружное;
- ИК-Led 3-го поколения;
- угол подсветки до 75°;
- дальность до 120 м, λ = 850 нм;
- вкл/выкл — автоматическое.
Это устройство подойдёт для СКУД и домофонии. IP-вызывная панель Hikvision DS-KV8102-IM с инфракрасной подсветкой, камерой и микрофоном:
- цветная камера, разрешение — 1 Мп;
- для одного абонента;
- дальность освещения — 1 м;
- угол обзора — по горизонтали 120°, по вертикали 120°.
Мощный ИК-прожектор от известного бренда BOSCH EX26LED с 60 высокоэффективными светодиодами:
- длина волны — 840 или 940 нм;
- атмосферостойкий корпус;
- регулируется интенсивность излучения и чувствительность фотоэлемента;
- радиус действия до 18 м;
- угол излучения 30°.
Тактический фонарь с 4Xик-светодиодами NItecore CI7, фонарь-хамелеон Nitecore CI6 с ИК-режимом:
- бренд — Nitecore;
- светодиод — Cree XP-G2 R5;
- световой поток — 440 лм;
- дальность — 190 м;
- элементы питания — CR123A, 18650;
- режимы работы — 13;
- длина — 143 мм, диаметр — 25,4 мм, диаметр головной части — 40 мм;
- вес — 138 г;
- водонепроницаемость — IPX-8;
- материал корпуса — алюминий;
- тип — карманный.
Лазерный ИК-осветитель Барс IR L для установки на цифровые ПНВ, подходит как для применения отдельно, так и для установки на оружие. Характеристики следующие:
- тип излучателя — лазерный диод;
- рабочая температура — -40…+50 градусов;
- длина волны излучения — 808 нм;
- источник питания — 2 шт. (CR123A);
- мощность излучения — 200 (100, 50) мВт;
- угол расхождения — 2… 20 градусов;
- размер — 150х30х40 мм,
- вес — 170 г.
Марка Pulsar — это бренд корпорации Yukon Advanced Optics, выпускает спектр оборудования: от ИК-фонарей и монокуляров до цифровых прицелов и тепловизоров для смартфона. На рис. 8 изображён внешний вид ИК-осветителя Pulsar.
Например, осветитель pulsar al 915t. Излучение в невидимом диапазоне. По стандарту IEC 60825-2007 соответствует первому классу. Тип диода — Laser 915 нм. Работает с цифровыми ПНВ. Крепится на планке Weaver. Отсутствует эффект муара. Фокусировка — световое пятно от узконаправленного до рассеянного. Регулировка мощности и угла расхождения пучка. Пятно в форме вытянутого эллипса. Использование ИК-осветителя позволяет увидеть невидимое.
Предыдущая
ИнфракрасныеКакие бывают инфракрасные лампы и для чего они нужны?
Следующая
БактерицидныеЧто такое ионизатор-люстра Чижевского
Спасибо, помогло!Не помогло
Что может служить ИК-передатчиком?
Чаще всего, для передачи, используются специальные светодиоды или лазеры. Для наших задач, то есть передачи по воздуху на короткие расстояния, используются ИК-светодиоды, то есть те, которые излучают инфракрасный свет. Они дешевы, компактны и просты в использовании.
Передающие (ИК) диоды работают так же, как и обычные светодиоды, которые мы рассмотрели в наших ранних статьях. Единственное отличие — это «кристалл», излучающий свет. Конечно, все это делается для того, чтобы у него была правильная длина волны. К тому же, благодаря свойствам человеческого глаза, работа этого диода для нас невидима.
ИК-светодиоды чаще всего выпускаются в двух вариантах: с прозрачной или темной (черный / темно-синий) линзой. Цвет линзы совершенно не имеет значения, темная линза не является препятствием для инфракрасного излучения. Кроме того, как и обычные светодиоды, они выпускаются в корпусах разного диаметра, например 3 и 5 мм.
Различные цвета линз ИК-светодиодов
Конкретная информация об ИК-диоде содержится в документации производителя, которую можно найти по символу диода — к сожалению, он нигде не отмечен на корпусе. Обозначение стоит поискать на сайте продавца, хотя оно не всегда указано.
В случае светодиодов этого типа стоит проверить такие параметры, как:
- длина излучаемой волны,
- максимальная продолжительная мощность,
- максимальный продолжительный ток (порядка нескольких десятков миллиампер),
- максимальный ток в импульсе (даже более 2 ампер),
- рабочее напряжение,
- угол освещения,
- размер корпуса.
Практическое использование передающих диодов отличается от светодиодов тем, что они обычно имеют импульсное питание. Передача происходит миганием с частотой несколько десятков килогерцовых импульсов с заполнением всего на несколько процентов. Проще говоря, вместо того, чтобы постоянно гореть, мы мигаем диодом очень быстро — таким образом, чтобы время свечения было намного короче, чем при выключенном диоде.
Конечно, речь идет об автоматически генерируемом сигнале, который очень и очень быстро «мигает» светодиодом (например, 36 000 раз в секунду) — мы разберемся с этим позже в этой статье. |
Благодаря этому, этот элемент не успеет перегреться при питании от более высокого тока. На практике мы получаем короткие, но очень сильные световые импульсы, которых достаточно для передачи данных на расстояние. Вот почему пульт от телевизора имеет такой хороший диапазон — сильный луч света легко отражается, например, от стен и потолка и попадает в приемник.
Пример управления ИК-диодом
Параметры примерного ИК-диода могут выглядеть так:
- длина волны: 940 нм,
- максимальная продолжительная мощность: 100 мВт,
- максимальный продолжительный ток: 20 мА,
- прямое напряжение: 1,6 В,
- угол луча: 20 °,
- размер корпуса: 5 мм.
Исходя из информации в статье описывающей, что такое мощность, можно быстро подсчитать, что подключение диода к источнику постоянного питания позволит току проходить через него не более чем:
I макс = P макс / U f = 100 мВт / 1,6 В = 62,5 мА
Однако это теоретические значения, потому что в этом случае 100 мВт — это максимальная мощность, которая может излучаться на этом диоде (с учетом, например, прочности ножек, структуры диода и его соединений). Он не обязательно должен совпадать с другими максимальными параметрами диода. Вы всегда должны внимательно изучать каталожные заметки о том или ином элементе.
Как мы уже упоминали, передающие диоды рассчитаны на импульсный режим работы, в отличие от рассмотренных ранее диодов, которые обычно работают в непрерывном режиме. Предположим, что рабочий цикл составляет 10%, что является обычным значением.
Это означает, что светодиод горит 10% времени и не горит 90% времени. |
Тогда допустимый ток в импульсе будет:
I max_imp = P max / (U f ⋅ k f ) = 100 мВт / (1,6 В 10%) = 625 мА
Более сильный ток означает большую интенсивность света. Мы хотим, чтобы наш пульт от телевизора работал практически из любой точки комнаты.
Такие расчеты следует рассматривать как приблизительные, поскольку для точных расчетов, необходима вольт-амперная характеристика, которую немногие производители предоставляют в своей документации. Тем не менее, на практике, такой оценки очень часто бывает достаточно.
Как проверить исправность ИК-диода
Осталось научиться проверять исправность ИК-светодиодов. Начнем с самой распространенной в быту поломки – выходу из строя ИК-диодов для пультов ДУ (ПДУ). Как проверить, исправен ли светодиод, не разбирая сам пульт? Ведь излучение таких приборов невидимо для человека. Да, невидимо, но его отлично видят видеокамеры.
Берем смартфон, ставим его в режим фотосъемки, подносим к камере мобильного устройства пульт ДУ, нажимаем на любую кнопку и смотрим на дисплей. Если с пультом все в порядке, то мы увидим, как светодиод начнет мигать.
Проверка ИК-светодиода в пульте ДУ при помощи камеры мобильного телефона
Тот же результат можно получить и при помощи веб-камеры или любой другой видеокамеры с контрольным дисплеем.
Есть и еще один метод проверки инфракрасного светодиода – при помощи мультиметра (тестера). Он очень удобен, если светодиод никуда не впаян. Для этого понадобится любой мультиметр, имеющий режим проверки диодов.
Этот прибор имеет режим проверки диодов
Инфракрасный светодиод проверяют следующим образом. Переключают прибор в режим теста диодов (на фото выше обозначен стрелкой) и щупами касаются выводов светодиода сначала в одной полярности, затем в другой. Отметим, что в этом режиме измеряется падение напряжения.
Схема подключения инфракрасного диода к тестеру
В одной из полярностей падение напряжения на переходе излучателя будет намного меньше, а через камеру смартфона мы увидим, как диод засветился.
Проверка светодиода при помощи батарейки
Можно ли проверить светодиод, не выпаивая его из платы? Можно. Берем мультиметр и проводим те же операции, что и в предыдущем случае. Благодаря токоограничивающему резистору внутренние элементы конструкции не будут влиять на качество проверки.
Вот и вся информация об инфракрасных светодиодах. Теперь мы знаем, что это за приборы, как работают и где используются.
Область применения
Инфракрасные светодиоды применяют далеко не только для дистанционных пультов управления бытовыми и технологическими приборами (телевизорами, кондиционерами, котельной аппаратурой), но также во многих других областях:
- В создании направленной системы подсветки медицинского оборудования.
- В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфракрасных прожекторов.
- В приборах ночного видения.
- В устройствах передачи данных посредством оптоволоконной сети.
- В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
- В военно-промышленной сфере.
- В детекторах, датчиках, сигнализациях.
- В конвейерных сушилках на мукомольных и зерноперерабатывающих предприятиях.
- Для стерилизации капиллярно-пористых пищевых продуктов.
- В качестве компонентов контрольно-измерительного и прочего оборудования.
Добиться максимально качественно инфракрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения. Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср
Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию
Область применения ИК диодов
На данный момент времени светодиоды инфракрасного спектра применяются в следующих областях:
- в медицине. Такие элементы радиосхем служат качественным и эффективным источником для создания направленной подсветки разнообразного медицинского оборудования;
- в охранных системах;
- в системе передачи информации с помощью оптоволоконных кабелей. Благодаря своему особому строению данные изделия способны работать с многомодовым и одномодовым оптоволокном;
- исследовательская и научная сферы. Подобная продукция востребована с процессах накачивания твердотельных лазеров в ходе научных исследованиях, а также подсветки;
- военная промышленность. Здесь они имеют такое же широкое применение в качестве подсветки, как и в медицинской сфере.
Помимо этого, такие диоды встречаются в различном оборудовании:
устройства для дистанционного управления техникой;
ИК диод в пульте дистанционного управления
- разнообразные контрольно-измерительные оптические приборы;
- беспроводные линии связи;
- коммутационные оптронные устройства.
Как видим, сфера применения данной продукции впечатляющая. Поэтому приобрести такие диодные комплектующие для своей домашней лаборатории можно без особых проблем, они в избытке продаются на рынке и в специализированных магазинах.