12 вольт из блока питания от компьютера

Содержание

Основные характеристики блока питания

Назначение компьютерного БП состоит в преобразовании сетевого напряжения переменного тока в постоянное, необходимое для узлов вычислительной машины. Рассмотрим основные параметры блоков питания этого типа:

Выходное напряжение. Их несколько и измеряются они относительно общей шины:

  • +3,3 В (кроме AT);
  • +5 В;
  • +5 В дежурные (кроме AT);
  • -5 В (в новых модификациях ATX может отсутствовать);
  • +12 В;
  • -12 В.

Общая выходная мощность. Может меняться от 200 Вт до 800 Вт и выше. Сам по себе параметр даёт только общее представление о выдаваемой мощности, поскольку блок питания создаёт несколько различных напряжений, рассчитанных каждый на свою нагрузку.


Этот блок питания для ПК имеет мощность 400 Вт

Ток или мощность на линии. Параметр указывает, какую мощность может выдать БП по той или иной шине. Некоторые производители вместо мощности указывают ток или и то и другое.

Форм-фактор. Промышленность выпускает блоки питания нескольких форм-факторов. Они зависят от габаритов системного блока, для которого они предназначены. Кроме разных габаритов, такие БП практически ничем друг от друга не отличаются и характеризуются теми же основными параметрами.


БП форм-фактора стандартный ATX, SFX, TFX и Flex-ATX (слева направо и сверху вниз)

Фото лабораторных блоков питания своими руками

https://youtube.com/watch?v=ptBgjMhqe9U

https://youtube.com/watch?v=plJ0uUZJkVU

Источники

  • https://supereyes.ru/articles/power_supply/laboratornyy_blok_pitaniya_impulsnyy_ili_lineynyy_kakoy_vybrat/
  • https://svoimirykami.guru/laboratornyj-blok-pitaniya-svoimi-rukami/
  • https://amperof.ru/sovety-elektrika/laboratornyj-blok-pitaniya-svoimi-rukami.html
  • https://USamodelkina.ru/16407-reguliruemyj-blok-pitanija-ochen-prosto-po-silam-dazhe-shkolniku-podrobno.html
  • https://tehnoobzor.com/schemes/pitanie/2779-kak-sdelat-laboratornyy-blok-pitaniya-svoimi-rukami.html
  • https://www.ixbt.com/live/topcompile/power-supply_3.html

Схемотехника ATX (AT) БП на TL494, KA7500

Originally published at Свободный эфир. You can comment here or there.

AT 200W TL494

ATX Shido 250W, TL494

Microlab 400W, KA7500B

ATX, IC= TL494

230W Key Mouse Elekctronic

PC SMPS AT, cca 200W

old AT, cca 200W

Sunny Technologies AT 200W

Codegen ATX 250W – 250XA1

Seven Team ST-230WHF 230W

JNC Computer LC-250ATX

SevenTeam ATX2V2 with TL494

PowerMaster FA-5-2, 250W

PowerMaster LP-8, 230W

SevenTeam ST-200HRK 200W

Green Tech MAV-300W-P4

DTK-PTP-2038 200W ATX

Codegen Atx 300W

ATX LWT2005 china, KA7500B

Delta DPS-200PB-59 H

Alim ATX 250W SMEV J.M 2002

ATX (базовая схема)

Power Efficiency electronic PE-050187

AT UK5-15A

unknown AT

Wintech PC WIN-235PE

MaxPower ATX PX-230W

DTK Computer PTP-2007 Macron

PC ATX EC Model 200X

ATX-300P4-PFC (passive PFC)

Схема для лабораторного БП

Для переделки ненужного блока питания компьютера в лабораторный источник с регулируемым выходным напряжением хорошо подходят БП стандарта ATX (но можно и AT), выполненные по схеме с ШИМ на микросхеме TL494 или ее аналогах.

Структурная схема блока питания стандарта ATX.

Хотя они все построены по одной структурной схеме и работают по схожему принципу, физически реализованы источники питания могут быть по-разному. Потому первое, с чего надо начать – попытаться найти принципиальную схему от фактически имеющегося блока.

Процедуру переделки можно рассмотреть на примере модели LC-250ATX. Поняв принцип, можно будет работать и с другими подобными блоками.

Изначальная схема блока LC-250ATX.

В основу работы LC-250ATX положен принцип ШИМ, реализованный на стандартной для таких схем микросхеме TL494. Она формирует импульсы, которые усиливаются ключами на транзисторах Q6,Q7, далее через трансформатор T2 ключами на транзисторах Q1, Q2 создаются импульсы на первичной обмотке трансформатора T1. Эти импульсы трансформируются через вторичные обмотки и подаются на выпрямители различных напряжений, из которых для переделки интересен лишь канал +12 вольт.

Схема дежурного напряжения собрана на транзисторе Q3, трансформаторе T3 и интегральном стабилизаторе 7805. Этот участок также понадобится для будущей конструкции. На операционном усилителе LM339 собрана схема формирования сигнала PWR_OK и запуска БП сигналом от материнской платы.

Последовательность действий по переделке БП ATX в регулируемый лабораторный.

1. Удаляем перемычку J13 (можно кусачками)

2. Удаляем диод D29 (можно просто одну ногу поднять)

3. Перемычка PS-ON на землю уже стоит.

4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.

5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.

6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.

7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.

8. Меняем плохие : заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).

9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:

10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (. 2-ю ногу), С26, J11 (. 3-ю ногу)

11. Не знаю почему, но R38 у меня был перерублен кем-то рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.

12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.

13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.

14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.

Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут .

2 3 голоса

Рейтинг статьи

…спустя год…

Просматривая даташит на микросхему KA7500 (аналог
TL-494) я обнаружил другое, более простое решение стабилизации тока БП.
Авторы предлагают использовать второй компаратор (выв.15,16). С учётом
того, что изначально этот компаратор смещён на 80 мВ, получается очень
удобное решение. Мною оно повторено дважды. В приводимой схеме выходное
напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей
будки. Для зарядки аккумуляторов естественно, можно использовать блок
без перемотки, но всё-таки лучше перемотать. И провод желательно взять
по толще, и виточков добавить. 

При расчёте количества витков вторичной обмотки
желательно, что бы на ХХ напряжение на выходе моста было больше
стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и,
соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно.
Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в
каком-то нет. И вообще это смещение маловато для стабильной работы.Поэтому я промакетировал подобную ОС на “спицах” и вот что получилось.

Для удобства макетирования я выбрал компаратор
LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот
теперь всё красиво. Компаратор срабатывает на 6,1 Ампера. Красный
луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор
0,15 Ом сделать легче и греться будет меньше, чем 0,3.Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни
разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 – 200
градусов и в перчатках аккуратненько расшатываю.

Как все работает

Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2

Важно учесть, что именно он оказывает влияние на качество выходного сигнала

Лабораторный БП на Ардуино

Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.

Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.

Регулируемый блок питания лабораторный на lm317 (схема)

В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.

В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.

Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.

С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.

Схематическое изображение функционала

Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.

Подготовительные работы

Если мы прикупили нерабочий блок питания, нам потребуется для начала найти поломку и устранить её.

https://youtube.com/watch?v=Q-FSCznNFcU

Для этого включаем БП в сеть и проверяем напряжение на 9 контакте (фиолетовый провод, идущий к большому разъёму). Если есть 5 В – приступаем к следующему шагу, иначе ищем поломку в цепи источника дежурного питания.

При наличии 5 вольт проверяем напряжение на выводе 12, оно должно быть в пределах 7–41 В.

Самая распространённая неисправность дежурки – высохшие конденсаторы, но следует проверить на наличие КЗ и диоды, и транзисторы, а также обмотки трансформатора.

Если дежурный БП исправен, но ШИМ всё равно не запускается, проверяем работоспособность источника опорного напряжения.

Нередко бывает достаточно заземлить вывод 4 микросхемы, после чего ШИМ благополучно стартует. Это означает, что проблему следует искать в цепи защиты блока от перегрузок, или же в контуре формирования служебных сигналов. Но поскольку защита от перегрузок нам не потребуется, проверять её мы не будем. Аналогичным образом поступаем и со схемой формирования служебных сигналов.


Можно увеличить

Высокочастотные токи

Что самое главное – можно изготовить лабораторный блок питания из компьютерного БП с наличием высокочастотного тока на выходе. Для некоторых устройств, например инверторов подсветки ламп монитора, необходим именно ток ВЧ. Как вы знаете, компьютерный БП построен по инверторной схеме. Следовательно, где-то в нем можно найти напряжение 12 вольт с высокой частотой. Для этого необходимо сделать следующее:

  1. Разбираете корпус блока питания (предварительно отключите его от сети).
  2. Находите самый большой трансформатор. Это высокочастотный трансформатор, именно на нем и будет находиться ток высокой частоты.
  3. Два провода припаиваете к первичной обмотке и выводите из корпуса.

Теперь остается только все красиво оформить – сделать переднюю панель, установить нужное количество гнезд и подписать их, чтобы не запутаться. При изготовлении лабораторного источника питания из компьютерного БП вы получаете одно большое преимущество – напряжение на выходе всегда стабильно. Дополнительных схем стабилизации не требуется. И рассмотренный в самом начале лабораторный блок питания 0-30В оказывается намного хуже по параметрам, нежели из компьютерного БП.

Сборка рабочей конструкции

Для удобства пользования и подключения, я вывел шнур от блока питания в корпус батареи. Шнур взял 3,5 метра
длинной, какой был в наличии. Из батареи удалил все аккумуляторные элементы и вмонтировал LC-фильтр. Теперь,
если у меня появится каким-то образом исправная батарея — ее всегда можно будет поставить на шуруповерт, а блок
питания убрать про запас. Аккумуляторы из батареи не выбросил, есть идея где их применить, но это тема для
другого обзора.

Так как шнур, соединяющий блок с шуруповертом, обладает определенным сопротивлением и индуктивностью, можно
попробовать замкнуть перемычкой выводы катушки L1. Теоретически, это может повысить мощность на мизерное
значение.

Со шнуром шуруповерт себя отлично чувствует, но если честно, мне он показался несколько слабоватым при торможении
рукой. Но пробные закручивания саморезов развеяли мои сомнения: саморезы длинной 35 мм спокойно закручиваются в фанеру
20 мм. Это означает, что шуруповерт будет удовлетворять большинство потребностей в ремонте.

У блока я отрезал все выходные провода, оставив зеленый стартовый, его конец я припаял к общему проводнику
платы, куда впаяны все черные. Лучше всего аккуратно выпаять все провода, но мой паяльник был слишком слабый
для этого и пришлось обрезать. К общему контакту и +12 (куда впаяны желтые) припаял два коротких, жестких
медных провода и соединил через клемник со шнуром к шурику.

На этом мы закончим данный обзор, желаемого мы добились — шуруповерт отлично работает от компьютерного блока
питания. В дальнейшем планирую сделать для платы блока питания добротный фанерный корпус без щелей —
тесты показали, радиаторы на плате совсем не греются и можно не беспокоиться о перегреве элементов в закрытом
корпусе.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Для подачи напряжения на этот БП служит механический выключатель Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается — это слышно даже по шуму вентилятора.

С чего начать

Чтобы создать зарядный аппарат, потребуется компьютерный блок, обеспечивающий питание для ПК, то есть персонального компьютера.

Если это первая попытка изготовить подобное устройство, разбирать свой новый компьютер на запчасти вовсе не нужно. Достаточно взять старый комп либо купить простейший блок на форм-факторе ATX с мощностью буквально 200–250 Вт. Переживать не стоит, поскольку такой мощности хватит, чтобы заряжать автомобильный аккумулятор. Ещё и с приличным запасом.

Работать, как и полагается по технике безопасности, нужно с отключёнными компонентами блока питания. Лишь после завершения сборки потребуется подключить аппарат к сети и протестировать его.

Самостоятельная переделка блока питания от компьютера (БП) в полноценное и работоспособное зарядное устройство для легковой автомобильной аккумуляторной батареи начинается с выполнения таких процедур:

  • подготовьте блок питания с необходимыми характеристиками;
  • отпаять все штатные провода, выходящие из БП;
  • оставить нужно только зелёный провод, который следует припаять к минусовым контактам;
  • учитывайте, что площадки, откуда шли провода чёрного цвета, являются минусом;
  • такие переделки позволят обеспечить автоматический запуск блока при его подключении к сети;
  • одновременно следует припаять провода с клеммами к минусу, а также к шине +12 (в БП это бывшие провода жёлтого цвета);
  • эти шаги позволят получить более удобное зарядное устройство с возможностью настройки.

Это лишь первый этап. Но если всё сделать правильно, в дальнейшем получится отличное зарядное устройство.

Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK. Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме. Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю

После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Как подобрать компоненты

Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).

Площадь сердечника для разных типов трансформаторов.

Мощность вычисляется по формуле:

P=S2/1.44 где:

  • P-мощность в Ваттах;
  • S- сечение в квадратных сантиметрах.

Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.

Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:

  • определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
  • эта величина умножается на необходимый уровень напряжения.

Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.

Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.

Транзистор Наибольший ток коллектора (постоянный), А
КТ818 (819) 10
КТ825 (827) 20
КТ805 5
TIP36 25
2N3055 15
MJE13009 12

Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо

Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:

  • габариты конденсатора;
  • бросок тока на заряд, который может быть значительным при большой емкости.

Выходной конденсатор БП может иметь емкость около 1000 мкФ.

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель:

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель:

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

AtxPower.pdf — схема фальшпанели

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

AtxPowerElectronics.pdf — управляющая электроника БП
 
 

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

IAR.rar — прошивка — исходник + hex

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

Общие характеристики блока питания ATX:

   Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера

Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги: а) Входное высокое напряжение сначала выпрямляется и фильтруется. б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между высоковольтной и низковольтными частями схемы

 г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.Основными достоинствами таких источников являются: — Высокая мощность при небольших размерах — Высокий КПД    Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В. К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора. 

Алгоритм зарядки аккумулятора

Выставить регулировочными колёсиками ограничение тока по минимальному значению, а напряжение – соответственно типу батареи: для сурьмянистых – 14.3–14.6 В, для кальциевых – 14.8–15.5 В.

https://youtube.com/watch?v=HLWhrLjk4rI

Отсоединяем клеммы аккумулятора, подключаем ЗУ (следим за полярностью!). Включаем зарядное устройство в сеть, выставляем максимальное значение тока заряда.

Скорее всего, напряжение при этом снизится на некоторую величину, в зависимости от внутреннего состоянии батареи, однако ток заряда будет удерживаться на необходимом начальном уровне. По мере заряда АКБ ток начнет снижаться, а напряжение быстро поднимется до установленного значения.

Как показали испытания с протяжённой во времени зарядкой (около 10 часов) с 8-амперной нагрузкой (двумя автомобильными лампами), при работающем вентиляторе блок питания компа не перегревается.

Как заставить блок питания работать без компьютера

Как правило, при включении блока питания в сеть его 12В шина остается обесточенной. Это происходит во всех современных блоках питания. Единственное напряжение, которое имеется – это 5В SB – дежурное напряжение. Для запуска основной питающей линии с вольтажом 12, 5 и 3.3В необходимо наличие низкого логического уровня на контакте PC-ON. Без использования материнской платы данный низкий логический уровень может обеспечить простая перемычка, помещенная между общим проводом (любым черным проводом) и отводом PC-ON (зеленым проводом). Если перемычка стоит – блок питания включается даже без материнской платы, если вытащить перемычку – отключается. Все предельно просто и понятно.

Заключение

Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет. Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.

 Загрузка …