Универсальный регулятор мощности своими руками

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы

Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.


Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Трехфазный регулятор мощности своими руками

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности.

Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы.

Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов.

Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой.

При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности.

То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

  • Симисторы довольно долговечны, так как в них отсутствуют механические контакты.
  • Из-за отсутствия механической составляющей отсутствует искрообразование.
  • В моменты нулевого сетевого тока симистор может проводить коммутацию, что тем самым снижает количество помех и обеспечивает высокую точность работы схемы.

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Распространенные модели

Существуют модели готовых регуляторов мощности. Одним из представителей является модель РМ-2. Довольно простая модель и недорогая модель. Цена колеблется от 1300 до 1500 р.

Прибор рассчитан на напряжение от 30 до 400 В. А также есть возможность использовать как в домашних условиях, так и на производстве.

Как правило, прибор применяют для регулировки температуры различного электронагревательного оборудования.

Следующей модификацией будет модель РМ 2 16А.

Задачей РМ 2 16 А, является изменение уровня освещения и управление вращением двигателей различного типа.

Входное напряжение не должно превышать 400 В, а нагрузка 16А. Цена этого аппарата может обойтись в 2300 рублей.

Модель РНЭ-1 нашла свое применение в бытовых условиях: для регулировки нагрева паяльника, изменение яркости ламп (использование в качестве диммера), а также с успехом можно подключить обогреватели и регулировать температуру. В конструкцию прибора входит защита от короткого замыкания, которая представлена в виде плавкого предохранителя. При чрезмерном перегреве срабатывает термозащита и регулятор останавливает подачу энергии к прибору. После остывания прибор вновь можно включить и эксплуатировать дальше. Небольшая цена является довольно весомым плюсом и составляет 1200 рублей.

Если покупатель обладает знаниями в области радиоэлектроники, то можно собрать регулятор тока своими руками, и модель NF будет лучшим выбором.

В комплект входят печатная плата из фольгированного стеклотекстолита, различные электронные компоненты.

Цена этой модели колеблется от 900 до 1100 рублей.

Схемы на основе симистора

Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.

Зачастую при покупке обычного паяльника температура его настолько велика, что возможны отслоения дорожек на печатных платах, а также порча радиокомпонентов. Вот одна из схем регулятора мощности на симисторе.

Нюансы в конструкции

Регулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Что такое симистор и как он выглядит — кратко

Словосочетание «симметричный триодный тиристор» на английский язык переводится как symmetrical triode thyristor. Его же именуют triode for alternationg current (триод для переменного тока). Или сокращенно — triac (триак).

Все эти названия общеприняты, они встречаются в технической литературе. Вы можете столкнуться с любым из них.

Показываю фотографиями наиболее типичные конструкции корпусов, с которыми выпускаются эти полупроводниковые приборы.

На фото любого из них хорошо видно три контактных вывода. Они совместно с устройством корпуса изготавливаются под мощность номинальной нагрузки, которую должны передавать и коммутировать в режиме ключа.

Что такое ключ в электронике и электрике — образное пояснение

Сравним его работу с устройством входной двери, закрытой на замок.

Человек без ключа не сможет через нее пройти: замок надежно закрыт. Владелец квартиры и его доверенные люди имеют ключ, открывают дверь, свободно проникают в помещение.

Точно так же работают ключи в электрике, пропуская нагрузку. Только они управляются по команде и бывают трех типов:

  1. Механическими.
  2. Электромеханическими.
  3. Электронными.

Электрический ток совершает работу, например, освещает помещение. А ключ позволяет человеку управлять этим процессом за счет использования определенных технологий. Они разрешают коммутировать силовые контакты и даже выполнять дополнительные действия.

Таблица: как работает электрический ключ

Функции Вид ключа
Механический Электромеханический Электронный
Как работает Силовые контакты выключателя, переключателя, кнопки коммутируются кинематической схемой за счет манипуляций оператором Силовые контакты переключает электромагнит под действием управляющего сигнала. Силовые контакты коммутирует электронная схема под действием управляющего сигнала.
Управляющий сигнал Ручное действие Срабатывание электромагнита происходит под воздействием определенного электрического параметра нормируемой величины (уставки). Это может быть ток, напряжение, частота, мощность, фаза… Биполярный транзистор коммутируется входным управляющим напряжением. Полевой транзистор — электрическим полем, посему он так и называется. Тиристор и симистор работают от тока, протекающего через управляющий электрод.
Основное преимущество Относительная простота механизма Возможность дистанционных коммутаций за счет изменения различных электрических сигналов Кроме дистанционных переключений схемы есть регулировка выходного тока, что позволяет собирать различные регуляторы. Как пример, изменять мощность нагрузки, выставлять обороты вращения электродвигателя.

Основным недостатком механических и электромагнитных ключей является переключение силовых контактов, вынужденно разрывающих цепь нагрузки.

При этом возникает электрическая дуга, выжигающая поверхность контактирующих металлов.

Она же может стать причиной пожара или взрыва горючих сред.

На предприятиях энергетики введена обязательная процедура: ежегодный внутренний осмотр всех реле, контакторов и пускателей с чисткой поверхностей контактов и прожимом контактных соединений.

Электронные ключи работают без дуги. Они имеют уменьшенные габариты, удачно вписываются внутри корпусов электроприборов.

Параметры нагрузки в зависимости от угла поворота движка регулятора

                                                                                                          Таблица 1

Нагрузка Параметр Угол поворота, град.
45 90 135 180 225 270 290
~U, В 20 71 124 176 219 224
Лампа ~I, А 0,07 0,17 0,24 0,32 0,39 0,4
накаливания P, Вт 1,4 12,07 29,76 56,32 85,41 89,6
100 Вт Pотн. 0,02 0,13 0,33 0,63 0,95 1
Pw, Вт 13,5 29 48 65 81,5 93 95
Pw отн. 0,14 0,31 0,51 0,68 0,86 0,98 1
~U, В 28 70 121 173 214 218
~I, А 0,3 0,75 1,22 1,63 2,05 2,11
Кипятильник P, Вт 8,4 52,5 147,62 281,99 438,7 459,98
500 Вт Pотн. 0,02 0,11 0,32 0,61 0,95 1
Pw, Вт 33 109 192 294 390 466 470
Pw отн. 0,07 0,23 0,41 0,63 0,83 0,99 1
~U, В 23 63 114 169 207 214
~I, А 0,045 1,23 2,02 2,88 3,57 3,7
Утюг P, Вт 1,035 77,49 230,28 486,72 738,99 791,8
1000 Вт Pотн. 0,00 0,10 0,29 0,61 0,93 1
Pw, Вт 46 176 316 488 662 780 791
Pw отн. 0,06 0,22 0,40 0,62 0,84 0,99 1

Пояснения к таблице, скопированной из Excel-файла:

  • угол поворота 290° – это упор резистора;
  • U – напряжение на нагрузке, прямое измерение, мультиметр M890F (исходная схема без R4);
  • I – ток нагрузки, прямое измерение, мультиметр DT9208A (исходная схема без R4);
  • P = U * I – потребляемая мощность, расчетное значение;
  • Pотн. = P / Pmax – относительная (приведенная) мощность, расчетное значение;
  • расцветка выделенных значений параметров соответствует расцветке линий на графике;
  • индекс “w” относится к измерениям с использованием ваттметра DuVolt PowerMeter (уже с R4);
  • «цифровое заполнение» каждой ячейки в строках “P” , “Pотн.” и “Pw отн.” происходит автоматически согласно формуле в ячейке (=результат математических действий со ссылкам на другие ячейки, содержащие известные величины).

Рис.3. Экспериментальные кривые при наладке регулятора мощности: тонкие линии – исходная схема, толстые линии – схема после наладки.

В среде Excel кривые на графике выстраиваются «автоматически» по величинам  из заданного диапазона ячеек таблицы. Все параметры построения и оформления графика задаются по желанию пользователя.

Как видно по ходу кривых, регулировка мощности в исходной схеме начинается только после поворота движка регулятора на угол более 45° (это поворот «впустую»), и лишь после наблюдается нарастание мощности, причем, не пропорционально углу поворота.

С целью “линеаризации” (выпрямления) регулировочной характеристики параллельно потенциометру R2 был установлен добавочный постоянный резистор R4=750к.

Но прежде я экспериментально подобрал этот номинал, временно впаяв в схему переменный резистор 1M:

– установил угол поворота движка потенциометра/резистора R2 в положение “0” (ноль) мощности регулятора;

– вращая движок резистора R4, добился момента полного гашения нагрузки (по амперметру/ваттметру 0 – это важно! – момент эффективного воздействия всех элементов управления на открытие/закрытие симистора);

– после отключений (схемы от 220 В и R4 от схемы!) измерил сопротивление переменного резистора (у меня получилось 750к) и заменил постоянным номиналом.

Теперь (при R4=const) нужно снять характеристики наших нагрузок при различном положении движка резистора R2 (группа кривых толстыми линиями).

Обзор моделей

Ниже будут рассмотрены различные модели современных симисторных регуляторов мощности, которые представлены на рынке:

Регулятор мощности РМ 2

Эту модель одинаково успешно можно использовать как в домашних условиях, так и на производстве. Основное предназначение заключается в изменении показателей мощности при функционировании отопительных приборов и источников освещения.

Отличительной чертой регулятора РМ 2 является низкий уровень зависимости от сетевого напряжения, устройство способно поддерживать стабильное напряжение на выходе вплоть до 1 В. Это положительно влияет на сам процесс изменения мощности, поскольку позволяет избежать резких перепадов и температурного перегрева оборудования.

Цена на такой прибор составляет около 1500 рублей.

Регулятор мощности РМ 2 16 А

Данный прибор был разработан специально для быстрого подключения и использования на промышленных и производственных предприятиях. Основные задачи регулятора заключаются в коррекции уровня освещения на объектах, изменении степени обогрева напольных покрытий, а также управлении скоростью вращения ряда двигателей коллекторного либо синхронного типа.

РМ 2 16 А может функционировать при входном напряжении, достигающим 400 В, также, как и РМ 2 способен поддерживать заданное стабильное напряжение до 1 В вне зависимости от колебаний этого параметра в электросети.

Средняя цена на данную модель составляет 2500 рублей.

Регулятор мощности РНЭ-1

Прибор предназначен для использования в быту и позволяет плавно осуществлять изменение напряжения в сети при помощи силового симистора, это дает возможность регулировать яркость ламп, мощность обогревателей и иного оборудования, которое способно по своим параметрам переносить изменение синусоидальной формы поступающего электрического тока.

Обладает защитой, которая представляет собой плавкий термический предохранитель. Функционирует данная модель при напряжении до 220 В.

цена на РНЭ-1 варьируется в рамках 1200-1400 рублей.

Регулятор мощности NF

Представляет собой не только полноценный прибор, но и своеобразный конструктор, который необходимо самостоятельно доработать перед началом использования. В комплектацию входит плата, схема и все необходимое для сбора симисторного регулятора мощности.

Готовый прибор можно задействовать в быту, как многофункциональное устройство, что обуславливается обширным диапазоном регулировки параметров.

Цена составляет около 1000-1200 рублей.

Регулятор мощности на симисторе

Симистор, по большому счету, – это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков – это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 – предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 – токоограничительный резистор – служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 – потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 – основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 – динистор, открытие которого управляет симистором.
  • VD4 – симистор – главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.


Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Решил написать свой способ как собрать зарядное устройство для аккумулятора. Сразу скажу, что зарядное работает исключительно в ручном режиме и ни сколько не портит аккумулятор, если следить за напряжением и током.

Для сборки нам понадобится: — трансформатор 220/16 160Вт, то бишь на вторичной обмотке должно быть не менее 16 вольт без нагрузки и 10А максимальный ток. Ток можно меньше (т.к. аккумулятор заряжается 0,1 от номинального тока, то на аккумулятор 60А/ч потребуется ток 6А) — диммер для электрического освещения квартиры или настольной лампы. Лишь бы мощность подошла. Лично я выбрал такой:

— диодный мост. Можно использовать диодный мост с генератора любого авто, а можно купить 4 диода, рассчитанные на нужный ток, на радиорынке и собрать их по схеме:

— вольтамперметр. Самый простой способ по-моему. Можно заказать прибор на АлиЭкспресс тут. Выглядит он так:

Всё в одном корпусе — вольтметр и амперметр. Напряжение питания прибора — 4,5 — 30В, измеряет ток до 10А. Либо можно поставить два стрелочных или цифровых прибора, вольтметр и амперметр соответственно.

— корпус, конденсатор хотя бы на 2200мкФ * 25В, выключатель, предохранитель по 220В, предохранитель по 16В.

Зарядное устройство — это по сути мощный блок питания, имеющий вход 220В, а выход регулируется от

0 до нужного нам тока и напряжения. Как же мы будем регулировать этот самый ток, ведь он достаточно велик. Некоторые БП строятся на тиристорных или симисторных регуляторах (а так же на полевиках) регулируя вторичный ток. Следовательно эти зарядные устройства дорогие, т.к. мощные тиристоры и так дорогие, дак к ним еще необходимо собрать схему управления. Так же часто применяют зарядные на базе импульсных преобразователей напряжения. Тоже не дешёвый и не самый простой вариант. Я же предлагаю регулировать первичный ток на трансформаторе посредством готового регулятора напряжения (диммер). А ток на вторичной обмотке напрямую зависит от тока на первичной обмотке. Только зная закон Ома ток в первичной обмотке будет значительно отличаться от вторичного (будет гораздо меньше) А для не большого тока нужны и детали меньше, а следовательно дешевле (по этому диммеры, хоть и построены на симисторе, стоят очень дёшего).

Принципиальная схема прибора:

Если в диммере есть выключатель, то на схеме выключатель SA не нужен. Так же необходимо на проводе или в корпусе установить предохранитель по 16В для защиты от короткого замыкания выхода.