Установка микросхемы TDA7294
В зависимости от применяемой микросхемы на плате устанавливается перемычка в нужной позиции.
Установка перемычки TDA7294 или TDA7293
Если перемычка установлена в положение TDA7293, то пустую квадратную контактную
площадку с надписью TDA7294
можно залить припоем.
Заливка контактной площадки
Так будет совсем-совсем немного, но лучше.
Микросхема должна быть установлена на радиаторе площадью не
менее 700 квадратных сантиметров. При установке микросхемы на радиатор
необходимо использовать термопасту. Радиатор должен свободно охлаждаться
воздухом.
Важно! Корпус
микросхемы соединен с минусом источника питания, поэтому, чтобы избежать
короткого замыкания источника питания, надо либо устанавливать микросхему через
изолирующую прокладку (и изолировать винт, которым микросхема крепится к
радиатору), либо надежно изолировать радиатор от корпуса. В первом варианте микросхема охлаждается немного хуже
Во втором есть возможность случайно замкнуть радиатор, находящийся под напряжением, на корпус
В первом варианте микросхема охлаждается немного хуже. Во втором есть возможность случайно замкнуть радиатор, находящийся под напряжением, на корпус.
Поступайте так, как вам удобнее.
На один радиатор можно установить несколько микросхем, при этом площадь радиатора увеличить в столько раз, сколько микросхем на него установлено. Но провода питания при этом должны подходить к каждой из плат усилителя. Нельзя «пускать питание» от одной микросхемы к другой через радиатор! Тот факт, что фланец микросхемы соединён с минусом питания не означает, что микросхема может получать энергию питания через свой фланец!
Крепить плату к радиатору можно просто прикрутив к нему микросхему. Этот способ применим, если на плате не используются тяжелые экзотические компоненты и если при эксплуатации усилителя отсутствует вибрация. Пример такого крепления платы в корпусе усилителя показан на странице Четырехканальный усилитель.
Габариты платы и присоединительные размеры показаны на
рисунке. Фланец микросхемы выступает за габариты платы на 1…2 миллиметра в
зависимости от того, как микросхема сориентирована при пайке.
Для более надежного крепления можно использовать специальное крепежное отверстие под винт с резьбой М3. Это отверстие изолировано от схемы.
Принцип использования этого отверстия довольно прост, главное, чтобы ничего не замкнуло.
Идея крепления
Типовое включение
Типовую схему включения на tda7294 можно взять из технического описания в datasheet. Контакты VM и VSBY подключают к положительному выводу +VS. Если питание на них отсутствует или меньше 1,5 В – устройство выключено. В случае увеличения напряжения более 3,5 В микросхема выходит из энергосберегающего состояния (StandBy) и тихого режима (Mute).
Данную конструкцию можно собрать используя изображенную на рисунке элементную базу. Вместе с тем, любителям глубоких низких частот, её следует незначительно доработать. Ниже приведены рекомендации по выбору конденсаторов и резисторов, которые помогут получить более качественное звучание.
На место С1 целесообразно установить металлизированные плёночные конденсаторы не менее 0,33 мкФ. Чем больше ёмкость, тем лучше будут звучать басы. C2 должен быть на 50 В и не менее 22 мкФ. На форумах рекомендуют ставить 220 мкФ. C3,C4 (на 50 В) задают время включения. Примерно такое же назначение у резисторов R4 и R5, их номиналы лучше оставить на 10 и 22 кОм соответственно.
ПОС конденсатор С5 имеет место только при превышении источника питания более 40 В. На схеме он указан 22 мкФ, но лучше ставить 220 мкФ x 50 В. Это также будет способствовать появлению хороших низких част.
С7, C9 это плёночныё кондеры на 0,33 мкФ. C6 и С8 можно не ставить. Резистор R1 определяет входное сопротивление. R2 и R3 (их соотношение R3/R2) задают коэффициент усиления.
Принципиальная схема
Принципиальная схема усилителя приведена на рисунке 1. Усилитель имеет инвертирующий (поз 4) и не инвертирующий (поз 1) входа, выведенные отдельно входы управления режимами работы MUTE (поз 9) и STBY (поз 8), а так же управление общим включением, при использовании нескольких усилителей (поз 5, 6) и джампер шунта R13 (поз 15 — 16).
Рис. 1. Принципиальная схема универсального блока усиления звука на микросхеме TDA7293 (TDA7294).
Схемы включения микросхем TDA7293 и TDA7294 практически одинаковые, единственным отличием является подключение конденсатора С8.
Для TDA7294 минусовой вывод этого конденсатора должен идти на 14-й вывод микросхемы, а для TDA7293 — на 12-й. Номиналы конденсаторов C3 и С7 могут быть одинаковыми, либо 22 мкФ, либо 47 мкФ, главное — чтобы номинал C3 был больше или равен номиналу С7.
Микросхема TDA7294 и ее особенности
TDA7294 – детище компании SGS-THOMSON Microelectronics, эта микросхема представляет собой усилитель низкой частоты AB класса, и построена на полевых транзисторах.
Из достоинств TDA7294 можно отметить следующее:
- выходная мощность, при искажениях 0,3–0,8 %:
- 70 Вт для нагрузки сопротивлением 4 Ом, обычная схема;
- 120 Вт для нагрузки сопротивлением 8 Ом, мостовая схема;
- функция приглушения (Mute) и функция режима ожидания (Stand-By);
- низкий уровень шумов, малые искажения, диапазон частот 20–20000 Гц, широкий диапазон рабочих напряжений — ±10–40 В.
Технические характеристики
Технические характеристики микросхемы TDA7294 | |||||
---|---|---|---|---|---|
Параметр | Условия | Минимум | Типовое | Максимум | Единицы |
Напряжение питания | ±10 | ±40 | В | ||
Диапазон воспроизводимых частот | Cигнал 3 dbВыходная мощность 1Вт | 20-20000 | Гц | ||
Долговременная выходная мощность (RMS) | коэф-т гармоник 0,5%:Uп = ±35 В, Rн = 8 ОмUп = ±31 В, Rн = 6 ОмUп = ±27 В, Rн = 4 Ом | 606060 | 707070 | Вт | |
Пиковая музыкальная выходная мощность (RMS), длительность 1 сек. | коэф-т гармоник 10%:Uп = ±38 В, Rн = 8 ОмUп = ±33 В, Rн = 6 ОмUп = ±29 В, Rн = 4 Ом | 100100100 | Вт | ||
Общие гармонические искажения | Po = 5Вт; 1кГцPo = 0,1–50Вт; 20–20000Гц | 0,005 | 0,1 | % | |
Uп = ±27 В, Rн = 4 Ом:Po = 5Вт; 1кГцPo = 0,1–50Вт; 20–20000Гц | 0,01 | 0,1 | % | ||
Температура срабатывания защиты | 145 | °C | |||
Ток в режиме покоя | 20 | 30 | 60 | мА | |
Входное сопротивление | 100 | кОм | |||
Коэффициент усиления по напряжению | 24 | 30 | 40 | дБ | |
Пиковое значение выходного тока | 10 | А | |||
Рабочий диапазон температур | 70 | °C | |||
Термосопротивление корпуса | 1,5 | °C/Вт |
Назначение выводов
Назначение выводов микросхемы TDA7294 | |||
---|---|---|---|
Вывод микросхемы | Обозначение | Назначение | Подключение |
1 | Stby-GND | «Сигнальная земля» | «Общий» |
2 | In- | Инвертирующий вход | Обратная связь |
3 | In+ | Неинвертирующий вход | Вход аудиосигнала через разделительный конденсатор |
4 | In+Mute | «Сигнальная земля» | «Общий» |
5 | N.C. | Не используется | – |
6 | Bootstrap | «Вольтодобавка» | Конденсатор |
7 | +Vs | Питание входного каскада (+) | Плюсовая клемма (+) блока питания |
8 | -Vs | Питания входного каскада (-) | Минусовая клемма (-) блока питания |
9 | Stby | Режим ожидания | Блок управления |
10 | Mute | Режим приглушения | |
11 | N.C. | Не используется | – |
12 | N.C. | Не используется | – |
13 | +PwVs | Питания выходного каскада (+) | Плюсовая клемма (+) блока питания |
14 | Out | Выход | Выход аудиосигнала |
15 | -PwVs | Питания выходного каскада (-) | Минусовая клемма (-) блока питания |
Обратите внимание. Корпус микросхемы связан с минусом питания (выводы 8 и 15)
Не забывайте про изоляцию радиатора от корпуса усилителя или изоляцию микросхемы от радиатора, установив ее через термопрокладку.
Также хочу заметить, что в моей схеме (как и в даташите) нет разделения входных и выходных «земель». Поэтому в описании и на схеме определения «общий», «земля», «корпус», GND следует воспринимать как понятия одного толка.
Отличие в корпусах
Микросхема TDA7294 выпускается двух видов – V (вертикальный) и HS (горизонтальный). TDA7294V, имея классическое вертикальное исполнение корпуса, первой сошла с конвейера и до настоящего времени является наиболее распространённой и доступной.
Комплекс защит
Микросхема TDA7294 имеет ряд защит:
- защита от перепадов напряжения питания;
- защита выходного каскада от короткого замыкания или перегрузки;
- тепловая защита. При нагреве микросхемы до 145 °С включается режим приглушения (Mute), а при 150 °С включается режим ожидания (Stand-By);
- защита выводов микросхемы от электростатических разрядов.
Мостовое включение
Мостовая схема позволяет добиться до 120 Вт на выходе. Для её реализации потребуется две микросхемы и только в случаях, когда нагрузка составляет 8 или 16 Ом. При меньшем сопротивлении, из-за больших токов, TDA может перегреться и выйти из строя. Она представляет собой конструктивное решение из двух типовых, рассмотренных выше. При этом, громкоговоритель подключен между выходами (контакт 14) микросхем. Оптимальное питающее напряжение для такой сборки не менее 35 В. Вход одного из усилителей (контакт 3) должен быть подключен к земле.
Здесь необходимо наличие резистора обратной связи (на 22 кОм), между контактами 14 и 2, первой и второй микросхемы соответственно. Если этого не сделать, то усилитель работать не будет.
Для включения усилителя на контакты 10 (Mute) и 9 (StandBuy) должно подаваться не менее 5 В.
Принципиальная схема 4in1: усилитель TDA7294 RMS 100 Вт с источником питания и регулятором тембра
Списки деталей
Микросхемы:
Номинал | Количество |
---|---|
Микросхема TDA7294: | 1 шт. |
Микросхема 7812: | 1 шт. |
Микросхема 4558: | 1 шт. |
Стабилитрон диодный 12В: | 2 шт. |
Выпрямительный мостовой диод 6 А: | 1 шт. |
Резисторы 1/4W:
Номинал | Количество |
---|---|
390 Î — 1/4 Вт: | 1 шт. |
680 Î — 1/4 Вт: | 1 шт. |
1 кОм — 1/4 Вт: | 2 шт. |
2k2 Ом — 1/4 Вт: | 2 шт. |
2k7 Ом — 1/4 Вт: | 1 шт. |
3k3 Ом — 1/4 Вт: | 1 шт. |
5 кОм — 1/4 Вт: | 1 шт. |
8k2 Ом — 1/4 Вт: | 1 шт. |
10 кОм — 1/4 Вт: | 4 шт. |
20 кОм — 1/4 Вт: | 2 шт. |
22 кОм — 1/4 Вт: | 3 шт. |
30 кОм — 1/4 Вт: | 1 шт. |
47 кОм — 1/4 Вт: | 1 шт. |
10R Ом — 1/4 Вт: | 1 шт. |
56R Ом — 2Вт: | 1 шт. |
2K2 Ом — 2Вт: | шт. |
Потенциометр 50 кОм: | 3 шт.< |
Конденсаторы:
Номинал | Количество |
---|---|
Дисковые неполярные конденсаторы 100 пФ/керамический: | 2 шт. |
6н8Ф неполярный полиэфирный конденсатор: | 2 шт. |
Неполярный полиэфирный конденсатор 10 нФ: | 2 шт. |
Неполярный полиэфирный конденсатор 100 нФ: | 6 шт. |
Неполярный полиэфирный конденсатор 220 нФ: | 1 шт. |
Электролитический конденсатор 2.2uF/63V: | 1 шт. |
Электролитический конденсатор 10 мкФ/63 В: | 5 шт. |
Электролитический конденсатор 22uF/63v: | 2 шт. |
Электролитический конденсатор 100 мкФ/63 В: | 2 шт. |
Электролитический конденсатор 4700uF/63V: | 2 шт. |
Размещение компонентов
Это одноканальная (моно) аудиосистема. Для стереофонической аудиосистемы вам понадобятся две одинаковые схемы и внесите некоторые изменения, например: используйте более мощный трансформатор, а также выпрямительных диодов, более высокое значение емкости конденсатора для модуля питания. Применяйте только один блок питания. Установите стерео потенциометр и подключите к двум платам с помощью провода.
Характеристики
- Диапазон напряжения питания от +/- 10 В до +/- 40 В постоянного тока.
- Требуется радиатор, и его тепловое сопротивление должно составлять около 0,038 градуса Цельсия/Вт.
- В качестве нагрузки используйте динамик на 8 Ом мощностью 150 Вт.
- Для мощности 100 Вт, напряжение питания должно быть +/- 38 В постоянного тока.
- Источник питания должен быть хорошо отфильтрован и не иметь пульсаций.
- Если в источнике питания присутствует шум, это может вызвать колебания.
- VM = 1,5 В — порог включения звука, а VM = 3,5 В — порог отключения звука.
- VSTBY = 1,5 В — это порог включения режима ожидания, а VSTBY = 3,5 В — порог выключения режима ожидания.
- Типичное входное сопротивление TDA7294 составляет 100 кОм.
- Частотный диапазон от 20 Гц до 20 кГц.
- 145 градусов Цельсия — это порог теплового отключения. Скорость нарастания TDA7294 составляет 10 В/микросекунду, а коэффициент усиления по напряжению разомкнутого контура составляет 80 дБ.
- Ток покоя TDA7294 составляет примерно 30 мА, а его максимальное значение — 65 мА.
Предыдущая запись Комбинированный прибор измерения высокого напряжения
Следующая запись TPA3116D2 — мини-усилитель мощности 50 Вт
Параллельное включение
Как уже говорилось ранее, TDA7293 допускает параллельное включение двух микросхем (схема есть в даташит). Оно позволяет повысить ток в акустической нагрузке и добиться выходной мощности в 100-120 Вт. При таком подключении одно из устройств работает в режиме мастер (master), а другое – раб (slave). На slave будет работать только выходной каскад, который получает усиленный сигнал от master.
Параллельное подключение рекомендуется только для схем с повышенным питанием (до ± 40 В) с низкоомной нагрузкой 4 или 8 Ом. Подобным образом возможно соединить даже более двух микросхем, где одна будет выполнять роль master, а остальные slave. Но такое решение считается нецелесообразным, так как питающее напряжение необходимо будет увеличивать (нужен хороший блок питания), а прирост выходной мощности на выходе схемы будет незначительным.
Кроме того в таких схемах желательно предусмотреть поэтапное включение каждого из slave примерно через 1-2 сек, для смягчения возможных последствий после подачи напряжения на master. Дело в том, что в момент появления питания на выходах каждой из микросхем формируется бросок сигнала, который может повредить подключённые к ним slave-устройства, работающие в режиме slave. Задержку можно организовать с помощь дополнительных таймеров и управляющих реле.
При параллельном включении желательно, чтобы все микросхемы были от одного производителя, лучше из одной партии. Стоит учитывать, что с увеличением их числа в выходном результирующем каскаде неминуемо будут расти звуковые искажения. Указанные проблемы, необходимость применения мощного блока питания, а также усложнение схемы усиления, делают это решение непопулярным у радиолюбителей.
Все о микросхемах TDA7293 / TDA7294
Усилители на микросхеме TDA7294, TDA7293 довольно популярны. Но форумах часто встречаются и сообщения о том, что они (микросхемы) плохие, плохо работают и часто горят. Я считаю, что 95% проблем с микросхемой вызвано либо «кривыми» руками тех, кто ее использует, либо их недостатком знаний, вызывающим ошибки (эта цифра 95% возникла не на пустом месте, а из анализа сообщений на форумах за последние 2-3 года). Однако, мне пришлось и самому столкнуться с некачественными микросхемами.
Поэтому я провел некоторое «расследование» в этой области, и вот что выяснилось:
1. Мне попался экземпляр микросхемы, самовозбуждающийся на ВЧ. Без нагрузки работает все ОК. В частотном диапазоне от 10 Гц до 100 кГц, при выходных амплитудах от 0,05 до 22 Вольт. Ограничение наступает чистенькое (я всегда в новых устройствах подключаю генератор и осциллограф и смотрю это все). Одако, при подключении нагрузки и выходном напряжении больше 0,5 В на отрицательной полуволне сигнала возникает ВЧ генерация — «звон» (на глаз 50-80 кГц, не мерял). Источник питания хороший, на него грешить нельзя. Кроме того, я всегда ставлю прямо на плату развязывающие конденсаторы в цепи питания не менее 0,47 мкФ, и электролиты не менее 470 мкФ. Так что со стороны питания никакого подвоха.Вылечилось это очень просто — установкой цепочки из последовательно соединенных резистора 10 Ом и конденсатора 0,1 мкФ 63В, идущих с выхода микросхемы на землю (я теперь ее ставлю во все схемы, и она предусмотрена на моей плате — ведь хуже не будет, даже если она не нужна). Но на душе осадок неприятный — производителем эта цепочка не предусмотрена, значит и без нее все должно хорошо работать (и у меня много микросхем работали как часы).
2. Еще в одном экземпляре микросхемы «звон» вообще не удалось победить.
3. По отзывам в Интернете грамотных людей (у которых руки 100% нормальные), существует много изначально в той или иной степени «кривых» микросхем.
Судя по всему, структура микросхемы оказалась легко воспроизводимой, и кто-то ее делает в весьма «упрощенном» виде. Эту продукцию из-за ее дешевизны к нам и везут.
Кроме того. В этой микросхеме изначально заложена небольшая бомба. Дело в том, в микросхемах для изоляции широко применяют n-p переходы. Т.е. изолятор — это обратно смещенный диод, не проводящий ток. Так вот, этот набор n-p переходов в определенном месте микросхемы TDA7294 (выходные транзисторы усилителя напряжения) образует структуру, эквивалентную тиристору. При подаче на него напряжения определенной величины, тиристор открывается, и начинает этот ток пропускать. Причем, закрываться тиристор сам не умеет, поэтому ток через него перестает течь только тогда, когда микросхема вся сгорит!
В нормальных качественных микросхемах напряжение открывания этого тиристора велико, и все работает ОК (то есть, тиристор просто вообще никогда не открывается). А вот в «левых», где видимо сэкономили на толщине перехода, оно небольшое. И при резком повышении напряжения при включении (особенно при плохом блоке питания), тиристор открывается, и микросхема выходит из строя.
Надо сказать, что мне такие микросхемы не попадались. Или из-за того, что я использую достаточно хорошие источники питания, паразитный тиристор не открывался? Так что практического подтверждения открыванию паразитного тиристора у меня нет.
Точно также есть опасность спалить микросхему по этой причине (паразитная тиристорная структура) при раздельном питании. В этом случае необходимо одновременно подавать на микросхему сразу четыре напряжения, и тут еще больше шансов неугодить этому паразиту-тиристору.
Это все не значит, что микросхема однозначно плохая, и все вообще ужасно! То количество брака, с которым сталкивался я сам — не такое уж и большое. Поэтому не стОит бояться! Все свои схемы я стараюсь разрабатывать так, чтобы дать минимум шансов всем «вредным» микросхемам.
У меня еще ни одна не сгорела!!!
Подключение регулятора громкости
Если предусилитель отсутствует, то регулятор громкости
подключается непосредственно к усилителю
Важно, чтобы входные цепи не имели
контакта с «землей» или с корпусом усилителя.
В качестве регулятора рекомендуется использовать переменный резистор (потенциометр) сопротивлением 30…50 кОм. Предельные значения сопротивления регулятора громкости 5…100 кОм, но при этом возможно небольшое ухудшение качества звучания.
Переменный резистор лучше использовать с экспоненциальной
зависимостью сопротивления от угла поворота. Тогда при вращении ручки
регулятора, громкость будет изменяться пропорционально углу поворота. Такие
переменные резисторы российского производства имеют в обозначении букву В, а
резисторы произведенные не в России – букву A.
Технические характеристики
Усилитель TDA7293 обеспечивают небольшие уровни шумов и искажений на выходе. Согласно техническому описания (datasheet) с её помощью можно добиться максимальной мощности звучания в 100Вт, при нагрузке (RL) в 8 Ом и предельном напряжении питания (VS) в ± 40 В. С такими параметрами получают чистыми 50-60 Вт и более, если параллельно подключаются несколько устройств. Суммарный коэффициент гармонических искажений (THD) не превышает 10 %. Это обусловлено наличием встроенных полевых транзисторов в предварительном и выходном каскадах усиления у данной микросхемы.
Максимальные значения
Приведём максимальные характеристики TDA7293:
- предельное питающее напряжение VS (при отсутствии сигнала) ± 60 В;
- импульсный ток на выходе I O = 10 А;
- рассеивания мощность (при Tcase = 70 ОС) Ptot = 50 Вт;
- диапазон рабочих температур от 0 до 70 ОС;
- температура: кристалла T j до +150 ОС; при хранении до +150 ОС.
Это максимальные значение параметров. Превышение любого из них может привести к повреждению устройства. При этом рассеиваемая мощность ограничивается температурой корпуса, поэтому чем больше будет радиатор, тем лучше.
Оценка мощности и звука
Оцениваю мощность первого усилителя в 2×70 Вт, а второго 2×60 Вт. Что касается затрат на сборку УМЗЧ, то за все электронные компоненты, интегральные микросхемы, транзисторы и трансформаторы для 2-х усилителей заплатил 4000 рублей с доставкой. Бесплатные были радиаторы, вентиляторы и корпус.
Теперь у всех легковых автомобилей есть регуляторы напряжения и колебания напряжения действительно незначительны. Единственное, что следует использовать, это дроссель от помех, потому что иногда при включении усилителя он тихо тянет какое-то радио. В следующей конструкции, которая наверняка будет на транзисторах, будет использоваться стабилизатор и система плавного пуска, а также разряда конденсатора при выключении УНЧ.
Аналоги
Какая микросхема лучше для усилителя звука tda7294 или tda7293? Данный вопрос встречается часто при поиске аналогов, так как эти две TDA можно назвать взаимозаменяемыми (главное условие – питания схемы не более 40 В). Основные параметры у них особо ничем не отличаются.
Вместе с тем, tda7293 имеет чуть лучше характеристики по максимальному питающему напряжению и выходной мощности. В ней доработаны функции вольтодобавки и клип-детектора. Реализована возможность параллельного соединения для умощнения. Но, несмотря на эти плюсы, некоторые радиолюбители считают её более глючной и менее надёжной в использовании.
Схема преобразователя питания
Теперь перейдем к инвертору. Сначала был собран конвертер по такой схеме:
Схема преобразователя питания авто 12 В для УНЧ
Но из-за слишком большого нагрева элементов и частых срабатываний защиты отказался от этого инвертора и построил более простой и надежный на трансформаторе etd34 с номинальной мощностью 200 Вт (максимум выдаёт 250 Вт). На первичной обмотке 5-проводной жгут 6×0,5 мм, а на 12-проводной вторичной обмотке 3×0,5 мм, включая потери на диоде и других компонентах на выходе 2х30 В. Все намотано симметрично, чтобы устранить скин-эффект.
Схема преобразователя питания 12-40 для авто УНЧ
Намотка симметричного трансформатора вызвала вначале некоторые проблемы, но после нескольких неудачных попыток удалось его сделать, основная проблема заключалась в том чтоб перемотать трансформатор в правильном соотношении проводов, чтобы напряжение распределялось симметрично.
Применил выпрямительные диоды BYW29-200 200V 8A, которые прикреплены на небольшие алюминиевые радиаторы. Конденсаторы 4x1000uF / 50V в качестве фильтра, транзисторы старые добрые IRFZ44 46 А 60 В 250 Вт, закрепленные на алюминиевом радиаторе от процессора AMD.
Охлаждение TDA9274 — это также 2 радиатора от процессоров AMD с вентиляторами 12 В 0,15 А 8×8 см. Была идея собрать термостат, но при нагрузке 10% практически ничего не нагревается, так что подключился к вентиляторам через резисторы 2 Вт 56 Ом, которые снижают напряжение до около 7 В, а двойные вентиляторы работают со скоростью 1000-1500 об / мин, что в достаточной степени охлаждает усилитель при максимальной нагрузке и практически не шумит.
Чтобы получить 400 Вт от преобразователя, нужно купить трансформатор ETD44 и использовать 2 или 3 пары транзисторов IRFZ44 или даже транзисторы с более высокой мощностью, например IRFZ48.
Корпус изготовлен из алюминия и прозрачного 2 мм акрила, все они соединены заклепками с возможностью отвинчивания верхнего корпуса.
TDA7265 и два варианта включения
Есть два варианта включения микросхемы. Открыть в полном размере
- Большой диапазон питания (+-25В);
- Схема с двуполярным питанием;
- Мощность 2х25 Вт
- Есть режим работы без звука и функция ожидания;
- Термозащита от перегрева во время работы усилителя;
- Присутствует защита от кз.
Характеристики микросхемы
Напряжение питания Uпит | 25 В |
Напряжение на выходе в холостом режиме | 80 — 130 мВ |
Ток потребления в холостом режиме Iпотр | 65 — 120 мА |
Ток смещения на неинвертирующем входе Iсмещ | 500 нА |
Выходная мощность Pвых | 20 — 25 Вт |
Коэффициент гармоник Kr | 0,01 — 0,7 % |
Коэффициент усиления (открытый контур) | 80 дБ |
Входное сопротивление Rвх | 15 — 20 кОм |
Температура отключения | 145 °C |
Предельные параметры микросхемы
Напряжение питания Uпит | 25 В |
Выходной пиковый ток | 4,5 А |
Рассеиваемая мощность Pрасс | 30 Вт |
Рабочая температура Tраб | -20…+85 °C |
Температура хранения Tхран | -40…+150 °C |
Умощнение транзисторами
Для повышения тока в нагрузке выполняют умощнение схемы на tda7294. Такое возможно реализовать добавив на выход транзисторы. Примеров подобных доработок в интернете достаточно. На рисунке представлен один из вариантов.
Номинальная мощность усилителя в таком исполнении, на нагрузку в 4 Ом, достигает 100 Вт. Коэффициент нелинейных искажений, при работе на уровне до 80 Вт, значительно меньше типового решения. Провал типа «лесенка» в каскаде вовсе отсутствует.
В интернете есть и альтернативные решения на этой TDA. Одним из них является популярный инвертирующий усилитель на tda7294, по схеме с проекта audiokiller. Пример сборки такого модуля смотрите в видеоролике
https://youtube.com/watch?v=kmJ0bUo9Oo4
Размеры микросхемы:
Как было сказано выше, микросхема TDA7294 выпускается в корпусе MULTIWATT15 и имеет следующее расположение выводов (распиновка):
Держатель для платы
Материал: АБС + металл, размер зажима печатной платы (max): 20X14 см…
Подробнее
- GND (общий провод )
- Inverting Input (инверсный вход)
- Non Inverting Input (прямой вход)
- In+Mute
- N.C. (не используется)
- Bootstrap
- +Vs
- -Vs
- Stand-By
- Mute
- N.C. (не используется)
- N.C. (не используется)
- +Vs (плюс питание)
- Out (выход)
- -Vs (минус питание)
Следует обратить внимание на тот факт, что корпус микросхемы соединен не с общей линией питания, а с минусом питания (вывод 15)
Заключение
Надеюсь, данная статья поможет вам собрать качественный усилитель на TDA7294. Напоследок представляю несколько фотографий в процессе сборки, не обращайте внимания на качество исполнения платы, старый текстолит неравномерно протравился. По результатам сборки были сделаны некоторые правки, поэтому платы в файле .lay немного отличаются от плат на фотографиях.
Усилитель изготавливался для хорошего знакомого, он придумал и реализовал такой оригинальный корпус. Фотографии стерео усилителя на TDA7294 в сборе:
На заметку: Все печатные платы собраны в одном файле. Для переключения между «печатками» покликайте по вкладкам как показано на рисунке.
Список файлов
amp_7294.lay6
Печатные платы для усилителя на TDA7294
Скачать
- Загрузок: 10395
- Размер: 290 Kb
TDA7294V-HS.pdf
Datasheet TDA7294
Скачать
- Загрузок: 5750
- Размер: 1477 Kb