Виды излучателей акустических систем

2Извлекаем звук из пьезоизлучателяс помощью функции analogWrite()

Пьезопищалку можно задействовать разными способами. Самый простой из них – это использовать функцию analogWrite(). Пример скетча – во врезке. Данный скетч попеременно включает и выключает звук с частотой 1 раз в 2 секунды.

Задаём номер пина, определяем его как выход. Функция analogWrite() принимает в качестве аргументов номер вывода и уровень, который может быть от 0 до 255, т.к. ШИМ-выводы Ардуино имеют 8-битный ЦАП. Это значение будет изменять громкость пьезопищалки в небольших пределах. Чтобы выключить пьезопищалку, нужно послать в порт значение «0».

Используя функцию analogWrite(), нельзя изменять тональность звука, к сожалению. Пьезоизлучатель всегда будет звучать на частоте примерно 980 Гц, что соответствует частоте работы выводов с широтно-импульсной модуляцией сигнала (ШИМ) на платах Arduino UNO и подобных.

Пьезоизлучатели отечественного производства

Отечественные пьезоизлучатели имеют обозначения, состоящие из букв «ЗП» (звукоизлучатель пьезоэлектрический) и номера серии. Наиболее распространенные в отечественной бытовой технике излучатели — ЗП-1 и ЗП-3.

Звукоизлучатели типа ЗП приводятся в действие подачей переменного напряжения определенной частоты и амплитуды, обычно, 3…10 В. Частота, при которой звуковое давление максимально, может достигать 75 дБ на расстоянии 1 метр от излучателя. Резонансная частота для большинства пьезоизлучателей составляет 1…4 кГц. Этим обусловлен их характерный, узнаваемый звук, напоминающий «пип».

Подключения зуммера к Arduino

Подключение модуля пьезоэлемента к Ардуино выглядит достаточно простым. Потребляемый ток маленький, поэтому можно просто напрямую соединить с нужным пином.

Электрическая схема подключения пьезоэлемента без сопровождающих модулей выглядит следующим образом.

На некоторых вариантах корпусов зуммера можно найти отверстие для фиксации платы при помощи винта.

Зуммер arduino имеет два выхода

Следует обратить внимание на их полярность. Темный провод должен быть подключен к «земле», красный – к цифровому пину с PWM

Один вывод настраивается в программе как «вход». Arduino отслеживает колебания напряжения на выводе, на который подаётся напряжение с кнопки, резистора и датчиков.

Напряжение на «вход» подается различное по значениям, система четко фиксирует только два состояния – вышеупомянутые 1 и 0 (логические ноль и единица). К логической единице будет относиться напряжение 2,3-5 В. Режим «выход» – это когда Arduino подает на вывод логический ноль/единицу. Если брать режим логического нуля, тут величина напряжения настолько мала, что ее не хватает для зажигания светодиода.

Обратите внимание, что входы довольно чувствительны к внешним помехам разного рода, поэтому ножку пьезопищалки через резистор следует подключать к выводу. Это даст высокий уровень напряжения на ножке

Отличие пьезодатчиков от других звукоснимателей

По техническим характеристикам и принципу работы пьезодатчики отличаются от других звукоснимателей. Несмотря на то что синглы и хамбакеры наиболее актуальны у гитаристов, они имеют ряд недостатков при сравнении. Популярными они стали из-за того, что являются частью электрического инструмента.

  1. Звукоснимателя для электрогитар представляют собой магнитные устройства с обмоткой. Они реагируют только на колебания струн, тогда как съемные датчики для акустики взаимодействуют еще и с корпусом.
  2. Обычные звукосниматели взаимодействуют только со струнами из ферромагнитных материалов (металлические с обмоткой из никеля или стали). Пьезо-элементы «видят» любой тип струн.

https://youtube.com/watch?v=tYr01-MPqUA

Основное преимущество «таблеток» и «палочек» состоит в том, что они легко снимаются и устанавливаются. При идеальном музыкальном слухе можно установить устройство в нужном месте для качественного звучания инструмента.

Что такое пьезоэлектрический эффект?

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

Особенности

Какое напряжение можно подать на звуковой пьезопреобразователь? Подобно тому, как железо можно намагнитить и размагнитить сильным током, так и пьезокерамике можно придать пьезоактивность и лишить ее высоким напряжением. Поэтому рабочее напряжение не должно превышать 30-40% от технологического, которым керамике придаются пьезосвойства. Допустимо, примерно, 350В на 1мм толщины пьезоэлемента. Толщина пьезоэлемента в оповещателе обычно 0,2 — 0,3мм. Стало быть максимальное напряжение составит 70 – 100В.

Каково сопротивление звукового пьезопреобразователя? Если частота тока находится в стороне от резонансной частоты преобразователя, то его сопротивление определяется статической емкостью. Эта емкость обычно лежит в пределах от 20 до 50 нанофарад. Если в пьезоблоке преобразователя использованы два пьезоэлемента по разные стороны от мембраны, то этот интервал удвоится. На резонансной частоте сопротивление уменьшается в число раз, равное добротности, но все же остается довольно значительным. Практически, сопротивление на резонансе, как правило лежит в интервале от 0,5 до 2,0 кОм. Особо мощный преобразователь, тот, что изображен на рис.13, имеет сопротивление на резонансе около 100 Ом.

На какую резонансную частоту проектируются оповещатели? Фактическая частота большинства пьезокерамических оповещателей лежит в интервале от 2,5 до 3,5кГц. Этот интервал соответствует максимальной чувствительности нашего слухового анализатора и, «к счастью», наиболее естественен для пьезокерамических звуковых преобразователей.

Заметим общую особенность пьезокерамических источников звука. Это небольшие интервалы возможных значений упомянутых параметров. Не сравнить конденсаторами и резисторами, где интервалы значений емкости и сопротивления ничем не ограничены. Естественно возникает вопрос. А что, если..? Если в несколько раз увеличить размеры мембраны и пьезоэлемента, то может быть можно существенно увеличить потребляемую и излучаемую мощность? Оказывается нельзя. Препятствие этому – масштабный фактор. Если муравей способен поднять спичку, то это не значит, что, имея вес человека, он поднимет железобетонную плиту. Кузнечик с нашим весом не прыгнет на двести метров. Кузнечик, человек и слон изготовлены из одного биологического материала, и изменение размеров тела не приводит к пропорциональному изменению способностей. Мы можем пропорционально увеличить размеры пьезоблока, но не можем при этом соответственно, сколь-нибудь заметно, изменить параметры материала, из которого он изготовлен.

Мы выяснили, чтобы получить достаточную громкость звука, нужно подействовать на оповещатель переменным напряжением в десятки вольт. Но если используется источник питания на более низкое напряжение, 6, 9, 12 вольт? Пожалуй, наиболее простой способ повысить напряжение на оповещателе – это использовать эдс самоиндукции катушки индуктивности. Схема оконечного устройства с дросселем проста, однако принцип работы требует пояснения, так как это поможет правильно выбрать параметры компонентов схемы. Обратимся к рисунку. На рис.16а показана упрощенная схема оконечного устройства, включающая в себя источник эдс Е, дроссель L, Д, пьезопреобразователь П и ключ Кл. Частоту переключения ключа устанавливают равной резонансной частоте преобразователя. На протяжении половины периода колебаний преобразователя ключ замкнут и, за это время, происходит накопление энергии в катушке. В течение второй половины периода ключ разомкнут и эдс самоиндукции действует на преобразователь.

Теперь продемонстрируем две практические схемы, предназначенные для «раскачки» описанного выше оповещателя ОСА-110-Б. На рис.20а показана схема для питания оповещателя однополярными импульсами. В схемах использованы дроссели с параметрами, близкими к расчетным: L = 15мГн, R = 18 Ом. Эти параметры рассчитаны исходя из «желаемого» звукового давления 107дБ. На рис.20б показана мостовая схема для питания разнополярными импульсами («толчки» в каждый полупериод, но со сменой знака). Последняя схема дает дополнительное увеличение громкости на 5-6дБ.

Конструкция

Пьезоэлектрический излучатель состоит из металлической пластины, на которую нанесен слой пьезоэлектрика, имеющий на внешней стороне токопроводящее напыление. Пластина и напыление являются двумя контактами. Для увеличения громкости звука к металлической пластине может крепиться небольшой рупор в виде металлического или пластикового купола с отверстием. В качестве рупора также может использоваться углубление в корпусе устройства, в котором используется пьезоизлучатель.

Пьезоэлектрические излучающие элементы могут иметь сферическую или цилиндрическую форму поверхности.

Применение звуковых волн

Эхолокация. Это способ определения местоположения тел
по отраженным от них ультразвуковым сигналам. Широко применяется
в мореплавании. На судах устанавливают гидролокаторы
приборы для распознавания подводных объектов и определения
глубины и рельефа дна. На дне судна помещают излучатель и
приемник звука. Излучатель дает короткие сигналы. Анализируя
время задержки и направление возвращающихся сигналов, компьютер
определяет положение и размер объекта отразившего звук.

Ультразвук используется для обнаружения и определения
различных повреждений в деталях машин (пустоты, трещины и др.).
Прибор, используемый для этой цели называется ультразвуковым
дефектоскопом
. На исследуемую деталь направляется поток
коротких ультразвуковых сигналов, которые отражаются от
находящихся внутри нее неоднородностей и, возвращаясь, попадают
в приемник. В тех местах, где дефектов нет, сигналы проходят
сквозь деталь без существенного отражения и не регистрируются
приемником.

Ультразвук широко используется в медицине для постановки
диагноза и лечения некоторых заболеваний. В отличие от
рентгеновских лучей его волны не оказывают вредного влияния на
ткани. Диагностические ультразвуковые исследования (УЗИ)
позволяют без хирургического вмешательства распознать
патологические изменения органов и тканей. Специальное
устройство направляет ультразвуковые волны с частотой от 0,5 до
15МГц на определенную часть тела, они отражаются от исследуемого
органа и компьютер выводит на экран его изображение.

Для инфразвука характерно малое поглощение в различных средах
вследствие чего инфразвуковые волны в воздухе, воде и земной
коре могут распространятся на очень далекие расстояния. Это
явление находит практическое применение при определении мест
сильных взрывов или положения стреляющего оружия.
Распространение инфразвука на большие расстояния в море дает
возможность предсказания стихийного бедствия — цунами.
Медузы, ракообразные и др. способны воспринимать инфразвуки и
задолго до наступления шторма чувствуют его приближение.

Описание и схема работы зуммера

Зуммер, пьезопищалка – все это названия одного устройства.  Данные модули используются для звукового оповещения в тех устройствах и системах, для функционирования которых в обязательном порядке нужен звуковой сигнал. Широко распространены зуммеры в различной бытовой технике и игрушках, использующих электронные платы. Пьезопищалки преобразуют команды, основанные на двухбитной системе счисления 1 и 0, в звуковые сигналы.

Пьезоэлемент “пищалка”

Пьезопищалка конструктивно представлена металлической пластиной с нанесенным на нее напылением из токопроводящей керамики. Пластина и напыление выступают в роли контактов. Устройство полярно, имеет свои «+» и «-». Принцип действия зуммера основан на открытом братьями Кюри в конце девятнадцатого века пьезоэлектрическом эффекте. Согласно ему, при подаче электричества на зуммер он начинает деформироваться. При этом происходят удары о металлическую пластинку, которая и производит “шум” нужной частоты.

Устройство пьезодинамика пищалки

Нужно также помнить, что зуммер бывает двух видов: активный и пассивный. Принцип действия у них одинаков, но в активном нет возможности менять частоту звучания, хотя сам звук громче и подключение проще. Подробнее об этом чуть ниже.

Модуль пищалки для Ардуино

Если сравнивать с обыкновенными электромагнитными преобразователями звука, то пьезопищалка имеет более простую конструкцию, что делает ее использование экономически обоснованным. Частота получаемого звука задается пользователем в программном обеспечении (пример скетча представим ниже).

Подключение пьезоизлучателя к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • пьезоизлучатель звука (Arduino buzzer);
  • провода «папа-папа».

Подключение пищалки (буззера) к Ардуино на схеме После того, как вы собрали схему и подключили пьезоизлучатель и Arduino, как на картинке выше, загрузите следующий скетч в микроконтроллер Arduino Uno. Воспроизведение звука на Ардуино выполняется функцией tone(), где в скобках указывается номер пина и частота звука. Чтобы отключить звук на зуммере (пьезодинамике Ардуино) необходимо использовать функцию noTone().

Скетч включения пьезодинамика функцией tone

void setup() { pinMode(10, OUTPUT); // объявляем пин 10 как выход } void loop() { tone (10, 600); // включаем на пьезодинамик 600 Гц delay(1000); // ждем 1 секунду tone(10, 900); // включаем на пьезодинамик 900 Гц delay(1000); // ждем 1 секунду noTone(10); // отключаем пьезодинамик на пин 11 delay(1000); // ждем 1 секунду }

Пояснения к коду:

  1. процедуры setup и loop Ардуино должны присутствовать в любой программе (скетче), даже если вам не нужно ничего выполнять в них — пусть они будут пустые, просто не пишите ничего между фигурными скобками;
  2. каждой открывающей фигурной скобке { всегда соответствует закрывающая }. Они обозначают границы некого логически завершенного фрагмента кода. Следите за вложенностью фигурных скобок в программе.

Скетч плавного изменения частоты зуммера

void setup() { pinMode(10, OUTPUT); // объявляем пин 10 как выход } void loop() { // увеличиваем частоту звука for (int x = 0; x < 500 ; x++){ tone (10, x); delay(1); } // уменьшаем частоту звука for (int x = 500; x > 0 ; x—){ tone (10, x); delay(1); } }

Пояснения к коду:

  1. для изменения частоты активного зуммера Ардуино используется цикл for, с помощью которого мы перебираем частоту звука от 0 до 500 и обратно.

Заключение. Мы рассмотрели, как включить пьезодинамик (пищалку) от Ардуино. Данная информация пригодится при создании проектов, в которых требуется звуковой сигнал при включении устройства на плате Arduino или при других случаях. Для уменьшения громкости сигнала активного пьезодинамика Ардуино можно использовать резисторы с разным номиналом, включая их в электрическую цепь.

Что такое ультразвуковой отпугиватель

Есть разные варианты, которые по многим параметрам отличаются. Но все же дальность работы зависит от мощности прибора. Например, в продаже встречаются изделия, которые выполнены из сирены и работают на расстояние до 50 м. Такие отпугиватели позволяют защититься как от животных, так и от воров. Работа многих приборах основана на ультразвуковом принципе, что позволяет чувствовать себя на улице безопасно.

Поскольку заводские изделия стоят недешево, многие люди стараются собирать их самостоятельно. Однако для этого понадобятся не только знания, но и необходимые компоненты, инструменты. Самодельный прибор будет подавать сигнал, который слышат только животные. На ультразвук они откликаются довольно резко и практически сразу убегают от человека.

Магнитопланар (изодинамический излучатель)

Этот планарный (плоский, пленочный) излучатель звука работает по тому же принципу, что и динамик: проводник с током движется в магнитном поле. Но в отличие от традиционного динамика голосовая катушка здесь фактически равномерно распределена по всей площади излучения, и вся эта излучающая поверхность находится в магнитном поле.

В случае с магнитопланарным излучателем источником звука является синтетическая пленка с нанесенными на нее проводниками с током. Эта плёнка размещается в поле решетки, сделанной из магнитов. Таким образом, вся площадь плёнки оказывается в магнитном поле, и пленка излучает звук равномерно со всей поверхности.

В начале существования магнитопланарных систем проводники из фольги просто наклеивали на пленку. Проблемой такого варианта было отслоение проводника после интенсивной эксплуатации: он нагревался, и клей не выдерживал. Наглядным примером могут служить выпускавшиеся в СССР динамические пищалки 10ГИ-1, наушники ТДС-7, ТДС-17.

Затем технология совершенствовалась, для приклеивания проводника на пленку стали применять температурную адгезию, закрепляя, например, алюминий (реже — медь) на майлар (лавсан, тефлон). Это более дорогой вариант технологии планарного излучателя — чуть дешевле обходится прошивание пленки токопроводящей проволокой.

Преимущества технологии состоят в том, что масса планарной подвижной системы на несколько порядков меньше, чем у классического динамика. В результате резко уменьшаются искажения. С другой стороны, магнитопланары предполагают излучение с большой площади, что, как минимум, создает проблему стереосцены.

Особое развитие принцип получил в наушниках, где используются различные его варианты, например, ортодинамические излучатели.

Принцип работы

Вообще, пьезокерамика неблагодарная субстанция, для того, чтобы свои колебания сообщить воздушной среде. Проиллюстрируем это на таком примере. Пусть в пьезокерамическом образце возбуждена стоячая волна. Она характеризуется некоторым значением звукового давления и амплитудой смещения частиц при колебаниях. Поставим вопрос. Как отличаются амплитуды колебаний частиц в керамике и в воздухе при равных там и там звуковых давлениях? Ответ: в 75 тысяч раз. Причина в том, что произведение плотности воздуха на скорость звука в воздухе в 75 тысяч раз меньше, чем аналогичное произведение для керамики. Доля излучения по мощности еще меньше – одна семидесятипятитысячная в квадрате! Иное дело, звука в воду . Об этом говорит сайт https://intellect.icu . Ее плотность в тысячу раз больше и скорость звука в пять раз больше, чем у воздуха. Поэтому техника гидроакустики и техника воздушной акустики имеют мало общего. Несмотря на такую пессимистическую предпосылку с помощью пьезокерамики удается получать значительные показатели по громкости. Отдельные образцы пьезокерамических преобразователей могут развивать на расстоянии 1м до 130дБ. Как ощутить эту цифру? Это болевой порог. Абсолютное значение звукового давления, соответствующего 130дБ – это 60 н/м2 или 6 кГ/м2. Такой звук давит на барабанную перепонку с силой, примерно 0,2Г. Кто не знает, что такое биметаллическая пластина? Две спеченные металлические пластины с различными коэффициентами линейного расширения при нагревании изгибаются на величину, многократно превышающую термическое удлинение. А если бы одна из пластин удлинялась, а другая пластина укорачивалась?.. Необходимым элементом электроакустического преобразователя с применением пьезокерамики является биморфная конструкция из двух тонких пьезоэлементов, из которых один при подаче напряж ения растягивается, а другой сжимается. Чаще всего между пьезоэлементами вклеивается третий элемент – металлическая мембрана. Металл придает прочность конструкции. Еще чаще бывает достаточно использовать один пьезоэлемент, а в качестве второго элемента биморфа служит сама мембрана (см. рис.1). Такие конструкции называют Биморфными пьезоэлементами или пьезоблоками.

Подключение пьезоизлучателя к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • пьезоизлучатель звука (Arduino buzzer);
  • провода «папа-папа».


Подключение пищалки (буззера) к Ардуино на схеме

После того, как вы собрали схему и подключили пьезоизлучатель и Arduino, как на картинке выше, загрузите следующий скетч в микроконтроллер Arduino Uno. Воспроизведение звука на Ардуино выполняется функцией , где в скобках указывается номер пина и частота звука. Чтобы отключить звук на зуммере (пьезодинамике Ардуино) необходимо использовать функцию .

Скетч включения пьезодинамика функцией tone

void setup() {
   pinMode(10, OUTPUT); // объявляем пин 10 как выход
}

void loop() {

   tone (10, 600); // включаем на пьезодинамик 600 Гц

   delay(1000); // ждем 1 секунду

   tone(10, 900); // включаем на пьезодинамик 900 Гц

   delay(1000); // ждем 1 секунду

   noTone(10); // отключаем пьезодинамик на пин 11

   delay(1000); // ждем 1 секунду

}

Пояснения к коду:

  1. процедуры setup и loop Ардуино должны присутствовать в любой программе (скетче), даже если вам не нужно ничего выполнять в них — пусть они будут пустые, просто не пишите ничего между фигурными скобками;
  2. каждой открывающей фигурной скобке всегда соответствует закрывающая . Они обозначают границы некого логически завершенного фрагмента кода. Следите за вложенностью фигурных скобок в программе.

Скетч плавного изменения частоты зуммера

void setup() {
   pinMode(10, OUTPUT); // объявляем пин 10 как выход
}

void loop() {
   // увеличиваем частоту звука
   for (int x = 0; x < 500 ; x++){
     tone (10, x);
     delay(1);
     }
   // уменьшаем частоту звука
   for (int x = 500; x > 0 ; x--){
     tone (10, x);
     delay(1);
     }
}

Пояснения к коду:

  1. для изменения частоты активного зуммера Ардуино используется цикл for, с помощью которого мы перебираем частоту звука от 0 до 500 и обратно.

Заключение. Мы рассмотрели, как включить пьезодинамик (пищалку) от Ардуино. Данная информация пригодится при создании проектов, в которых требуется звуковой сигнал при включении устройства на плате Arduino или при других случаях. Для уменьшения громкости сигнала активного пьезодинамика Ардуино можно использовать резисторы с разным номиналом, включая их в электрическую цепь.

Подключения зуммера к Arduino

Подключение модуля пьезоэлемента к Ардуино выглядит достаточно простым. Потребляемый ток маленький, поэтому можно просто напрямую соединить с нужным пином.

Подключение пищалки к Ардуино (порт 12)

Электрическая схема подключения пьезоэлемента без сопровождающих модулей выглядит следующим образом.

Схема подключения зуммера

На некоторых вариантах корпусов зуммера можно найти отверстие для фиксации платы при помощи винта.

Зуммер arduino имеет два выхода

Следует обратить внимание на их полярность. Темный провод должен быть подключен к «земле», красный – к цифровому пину с PWM

Один вывод настраивается в программе как «вход». Arduino отслеживает колебания напряжения на выводе, на который подаётся напряжение с кнопки, резистора и датчиков.

Пищалка Арудино с названиями контактов

Напряжение на «вход» подается различное по значениям, система четко фиксирует только два состояния – вышеупомянутые 1 и 0 (логические ноль и единица). К логической единице будет относиться напряжение 2,3-5 В. Режим «выход» – это когда Arduino подает на вывод логический ноль/единицу. Если брать режим логического нуля, тут величина напряжения настолько мала, что ее не хватает для зажигания светодиода.

Схема подключения пищалки к Ардуино

Обратите внимание, что входы довольно чувствительны к внешним помехам разного рода, поэтому ножку пьезопищалки через резистор следует подключать к выводу. Это даст высокий уровень напряжения на ножке