Дисплей ардуино

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея — 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.

Данный пример будет хорошим стартом для начинающих разбираться с Arduino

Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Проблемы подключения LCD1602 к Arduino по I2C

Если после загрузки скетча у вас не появилось никакой надписи на дисплее, попробуйте выполнить следующие действия:

  1. Можно регулировать контрастность индикатора потенциометром. Часто символы просто не видны из-за режима контрастности и подсветки.
  2. Проверьте правильность подключения контактов, подключено ли питание подсветки. Если вы использовали отдельный I2C переходник, то проверьте еще раз качество пайки контактов.
  3. Проверьте правильность I2C адреса. Попробуйте сперва поменять в скетче адрес устройства с 0x20 до 0x27 для PCF8574 или с 0x38 до 0x3F для PCF8574A. Если и это не помогло, можете запустить скетч I2C сканера, который просматривает все подключенные устройства и определяет их адрес методом перебора. Для изменения адресации необходимо установить джамперы в нужное положение, тем самым притянуть выводы A0, A1, A2 к положительному либо отрицательному потенциалу. На плате положения промаркированы.
  4. Если экран все еще останется нерабочим, попробуйте подключить LCD обычным образом.

Элементы платы

Дисплей

Дисплей MT-08S2A умеет отображать все строчные и прописные буквы латиницы и кириллицы, а также типографские символы. Для любителей экзотики есть возможность создавать собственные иконки.

Экран выполнен на жидкокристаллической матрице, которая отображает 2 строки по 8 символов. Каждый символ состоит из отдельного знакоместа 5×8 пикселей.

Контроллер дисплея

Матрица индикатора подключена к встроенному чипу КБ1013ВГ6, который выполняет роль посредника между экраном и микроконтроллером.

Контроллер КБ1013ВГ6 аналогичен популярным чипам зарубежных производителей HD44780 и KS0066, что означает совместимость со всеми программными библиотеками.

Контакты подключения

На плате дисплея выведено 14 контактов для подведения питания и взаимодействия с управляющей электроникой.

Вывод Обозначение Описание
1 GND Общий вывод (земля)
2 VCC Напряжение питания (5 В)
3 VO Управление контрастностью
4 RS Выбор регистра
5 R/W Выбор режима записи или чтения
6 E Разрешение обращений к индикатору (а также строб данных)
7 DB0 Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8 DB1 Шина данных (8-ми битный режим)
9 DB2 Шина данных (8-ми битный режим)
10 DB3 Шина данных (8-ми битный режим)
11 DB4 Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12 DB5 Шина данных (8-ми и 4-х битные режимы)
13 DB6 Шина данных (8-ми и 4-х битные режимы)
14 DB7 Шина данных (8-ми и 4-х битные режимы)

Дисплей может работать в двух режимах:

  • 8-битный режим — в нём используются и младшие и старшие биты (-)
  • 4-битный режим — в нём используются только младшие биты (-)

Использовать восьмибитный режим не целесообразно. Для его работы требуется на четыре дополнительные ноги, а выигрыша по скорости практически нет.

Включение подсветки

Фоновая подсветка дисплея — это отдельный контур, не связанный с остальным питание экрана. Для включения подсветки необходимо выполнить следующие действия:

  1. Установить перемычку на элемент на плате, что обеспечит подачу питания на анод подсветки через резистор.
  2. Установить перемычку на элемент на плате, что обеспечит подачу земли на катод подсветки.

Для создания перемычки достаточно капнуть припой на контактную площадку.

Как подключить нескольких устройств по I2C Arduino

В следующем примере к шине IIC Arduino будет подключено сразу три устройства — текстовый дисплей 1602, датчик давления bmp180 и RTC модуль часов. После сборки схемы можно сделать предварительное сканирование шины, но адреса у всех устройств разные и изменить адрес можно только у дисплея. У других устройств адреса «вшиты» производителем и используются в библиотеках по умолчанию.

Скетч. Подключение нескольких устройств к шине i2c

I2C интерфейс: подключение нескольких устройств

После сборки схемы, убедитесь, что у вас установлены необходимые библиотеки для работы с устройствами по IIC протоколу, и загрузите следующий пример кода в микроконтроллер. Данная программа будет выводить на текстовый экран текущую дату и время суток (устанавливаются в процедуре void setup и время можно поменять), а также данные о температуре воздуха и атмосферном давлении.

#include <Wire.h>  // подключаем библиотеку для интерфейса I2C 

#include <LiquidCrystal_I2C.h>  // подключаем библиотеку для 1602
LiquidCrystal_I2C LCD(0x27, 16, 2);  // создаем объект LCD

#include <SFE_BMP180.h>  // подключаем библиотеку для bmp180
SFE_BMP180 pressure;  // создаем объект pressure

#include <iarduino_RTC.h>  // подключаем библиотеку для часов
iarduino_RTC time(RTC_DS1307);  // создаем объект time

void setup() {
  LCD.init();  // инициализация дисплея
  LCD.backlight();  // включение подсветки

  pressure.begin();  // запускаем датчик давления

  time.begin();  // запускаем модуль часов
  time.settime(0, 30, 16, 1, 4, 21, 5);  // сек, мин, часы, дата, мес, год, день недели
}

void loop() {
  char status;
  double T, P, p0, a;

  // если прошла 1 секунда обновляем информацию
  if (millis() % 1000 == 0) {

    // выводим время с секундами и дату (день, месяц)
    LCD.setCursor(0, 0);
    LCD.print(time.gettime("H:i:s - d.m"));

    // узнаем температуру и выводим на дисплей
    status = pressure.startTemperature();
    if (status != 0) {
      delay(status);
      status = pressure.getTemperature(T);
      if (status != 0) {
        LCD.setCursor(0, 1);
        LCD.print("T:");
        LCD.print(T, 2);

        // узнаем давление и выводим на дисплей
        status = pressure.startPressure(3);
        if (status != 0) {
          delay(status);
          status = pressure.getPressure(P, T);
          if (status != 0) {
            p0 = pressure.sealevel(P, 1655.0);
            LCD.print(" D:");
            LCD.print(p0, 2);

          }
          else { LCD.setCursor(0, 1); LCD.print("error retrieving pressure"); }
        }
        else { LCD.setCursor(0, 1); LCD.print("error starting pressure"); }
      }
      else { LCD.setCursor(0, 1); LCD.print("error retrieving temperature"); }
    }
    else { LCD.setCursor(0, 1); LCD.print("error starting temperature"); }
  }

}

Пояснения к коду:

  1. обновление информации на текстовом экране происходит каждую секунду, данный интервал можно увеличить по своему желанию;
  2. время выводится с секундами, формат вывода времени и даты также можно изменить в строчке

Работа схемы

Схема устройства представлена на следующем рисунке.

В ЖК дисплее 16×2 если мы хотим задействовать подсветку, то нам будут нужны все его 16 контактов, в противном случае нам будет достаточно 14 контактов. 2 контакта, отвечающие за подсветку (Backlight), можно оставить неиспользованными. Среди оставшихся 14 контактов мы имеем 8 контактов данных (7-14 или D0-D7), 2 контакта для подачи питания (1&2 или VSS&VDD или GND&+5v), 3-й контакт для управления контрастностью (определяет насколько «жирными» будут выглядеть символы на экране дисплея) и 3 управляющих контакта (RS&RW&E).

На представленной схеме можно увидеть, что мы использовали только 2 управляющих контакта – это обеспечивает гибкость в управлении. Бит контраста и READ/WRITE используются редко, поэтому в нашем случае их можно замкнуть на землю – это обеспечивает ЖК дисплею максимальную контрастность и режим чтения. Таким образом, нам необходимо будет контролировать только контакты ENABLE и RS чтобы передавать на ЖК дисплей символы и данные.

В схеме необходимо будет сделать следующие соединения с ЖК дисплеем:
PIN1 или VSS на землю
PIN2 или VDD или VCC к источнику питания +5В
PIN3 или VEE на землю (обеспечивает максимальную контрастность – хорошо для начинающих)
PIN4 или RS (Register Selection) к контакту PIN0 ARDUINO UNO
PIN5 или RW (Read/Write) на землю (переводит ЖК дисплей в режим чтения, что упрощает взаимодействие с ним для начинающих)
PIN6 или E (Enable) к контакту PIN1 of ARDUINO UNO
PIN11 или D4 к контакту PIN8 of ARDUINO UNO
PIN12 или D5 к контакту PIN9 of ARDUINO UNO
PIN13 или D6 к контакту PIN10 of ARDUINO UNO
PIN14 или D7 к контакту PIN11 of ARDUINO UNO

Программная среда ARDUINO IDE позволяет пользователю использовать ЖК дисплей в 4-битном режиме. Этот тип взаимодействия с ЖК дисплеем позволяет сократить использование контактов ARDUINO, к тому же этот режим взаимодействия (4-битный) по умолчанию заложен в ARDUINO. На представленной схеме мы использовали 4-битный режим взаимодействия (контакты D4-D7).

То есть в сумме мы подсоединили 6 контактов ЖК дисплея к нашей плате Arduino, из которых 4 контакта будут использоваться для передачи данных и 2 контакта для целей управления.

Примеры работы для Espruino

В качестве примера подключим дисплей к управляющей плате Iskra JS.

Подключение к Iskra JS

Для подключения понадобятся соединительные провода «мама-папа».

Вывод Обозначение Пин Iskra JS
1 GND GND
2 VCC 5V
3 VO GND
4 RS P12
5 R/W GND
6 E P11
7 DB0
8 DB1
9 DB2
10 DB3
11 DB4 P5
12 DB5 P4
13 DB6 P3
14 DB7 P2

Вывод текста

Для вывода программы приветствия, воспользуйтесь скриптом:

hello-amperka.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P12,P11,P5,P4,P3,P2);
// печатем первую строку
lcd.print("Hello,");
// устанавливаем курсор в колонку 0, строку 1
// на самом деле это вторая строка, т.к. нумерация начинается с нуля
lcd.setCursor(, 1);
// печатаем вторую строку
lcd.print("Amperka!");

Кирилица

Вывод кирилицы на дисплей с помощью платформы Iskra JS доступен через встроенную в дисплей таблицу знакогенератора.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв.

Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Так букве соответствует код в шестнадцатеричной системе. Чтобы передать на экран строку «Яndex», необходимо в явном виде с помощью последовательности встроить в строку код символа:

lcd.print("\xB1ndex");

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона и следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две строки записанные рядом склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

lcd.print("\xB1eee"); // ошибка
lcd.print("\xB1"+"eee"); // правильно

Используя полученную информацию выведем на дисплей сообщение «Привет, Амперка!»:

hello-amperka-rus.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P12,P11,P5,P4,P3,P2);
// печатем первую строку
lcd.print("\xA8"+"p"+"\xB8\xB3"+"e\xBF,");
// устанавливаем курсор в колонку 0, строку 1
// на самом деле это вторая строка, т.к. нумерация начинается с нуля
lcd.setCursor(, 1);
// печатаем вторую строку
lcd.print("A\xBC\xBE"+"ep\xBA"+"a!");

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

// переключение с нулевой страницы на первую
command(0x101010);
// переключение с первой страницы на нулевую
command(0x101000);

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

change-page.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P12,P11,P5,P4,P3,P2);
// создаём переменную состояния
var state = false;
// печатаем первую строку
lcd.print("\x9b\x9c\x9d\x9e\x9f");
 
setInterval(function() {
  // каждую секунду меняем переменую состояния
  state = !state;
  // вызываем функцию смены адреса страницы
  lcdChangePage();
}, 1000);
 
function lcdChangePage () {
  if (state) {
    // устанавливаем 0 станицу знакогенератора (стоит по умолчанию) 
    lcd.write(0b101000, 1);
  } else {
    // устанавливаем 1 станицу знакогенератора
    lcd.write(0b101010, 1);
  }
}


Полную таблицу символов с кодами можно найти в .

3Библиотека для работы по протоколу I2C

Теперь нужна библиотека для работы с LCD по интерфейсу I2C. Можно воспользоваться, например, (ссылка в строке «Download Sample code and library»).
Библиотека для работы по протоколу I2C

Скачанный архив LiquidCrystal_I2Cv1-1.rar разархивируем в папку \libraries\, которая находится в директории Arduino IDE.

Библиотека поддерживает набор стандартных функций для LCD экранов:

Функция Назначение
LiquidCrystal() создаёт переменную типа LiquidCrystal и принимает параметры подключения дисплея (номера выводов);
begin() инициализация LCD дисплея, задание параметров (кол-во строк и символов);
clear() очистка экрана и возврат курсора в начальную позицию;
home() возврат курсора в начальную позицию;
setCursor() установка курсора на заданную позицию;
write() выводит символ на ЖК экран;
print() выводит текст на ЖК экран;
cursor() показывает курсор, т.е. подчёркивание под местом следующего символа;
noCursor() прячет курсор;
blink() мигание курсора;
noBlink() отмена мигания;
noDisplay() выключение дисплея с сохранением всей отображаемой информации;
display() включение дисплея с сохранением всей отображаемой информации;
scrollDisplayLeft() прокрутка содержимого дисплея на 1 позицию влево;
scrollDisplayRight() прокрутка содержимого дисплея на 1 позицию вправо;
autoscroll() включение автопрокрутки;
noAutoscroll() выключение автопрокрутки;
leftToRight() задаёт направление текста слева направо;
rightToLeft() направление текста справа налево;
createChar() создаёт пользовательский символ для LCD-экрана.

1Описание FC-113 преобразователя последовательного интерфейса в параллельный

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр – «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 – подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: «0» соответствует разрыву цепи, «1» – установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27.

I2C модуль FC-113 для подключения ЖК экрана

Установка библиотеки для модуля OLED

Контроллер SSD1306 OLED дисплея имеет гибкие, но сложные драйверы. Для использования контроллера SSD1306 необходимы огромные знания по адресации памяти. К счастью,  была написана библиотека Adafruit SSD1306, которая позволяет довольно простыми и понятными командами управлять OLED дисплеем.

Чтобы установить библиотеку, перейдите в раздел Sketch > Include Library > Manage Libraries…. Подождите, пока менеджер библиотеки загрузит индекс библиотек и обновит список установленных библиотек.

Отфильтруйте результаты поиска, введя adafruit ssd1306. Там должна быть пара записей. Ищите Adafruit SSD1306 от Adafruit. Нажмите на эту запись, а затем выберите Установить.

Библиотека Adafruit SSD1306 представляет собой аппаратную библиотеку, которая выполняет функции более низкого уровня. Она должна быть сопряжена с библиотекой Adafruit GFX для отображения графических примитивов, таких как точки, линии, круги, прямоугольники и т. д. Также установите и эту библиотеку.

Установка библиотеки LiquidCrystal I2C

Для работы с данным модулем необходимо установить библиотеку LiquidCrystal I2C. Скачиваем, распаковываем и закидываем в папку libraries в папке Arduino. В случае, если на момент добавления библиотеки, Arduino IDE была открытой, перезагружаем среду.

Библиотеку можно установить из самой среды следующим образом:

  1. В Arduino IDE открываем менеджер библиотек: Скетч->Подключить библиотеку->Управлять библиотеками…
  2. В строке поиска вводим «LiquidCrystal I2C», находим библиотеку Фрэнка де Брабандера (Frank de Brabander), выбираем последнюю версию и кликаем Установить.
  3. Библиотека установлена (INSTALLED).

Распиновка 16х02 символов

Перед тем, приступить к сборке и написанию кода, давайте сначала взглянем на распиновку LCD 1602.

Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

  • GND — должен быть подключен к земле Arduino.
  • VCC — это вывод питание для ЖК-дисплея, к которому мы подключаем 5-вольтовый контакт Arduino.
  • Vo (LCD Contrast) — вывод контролирует контрастность и яркость ЖК-дисплея. Используя простой делитель напряжения с потенциометром, мы можем точно отрегулировать контрастность.
  • RS (Register Select) — этот вывод позволяет Arduino сообщать ЖК-дисплею, отправляются команды или данные. В основном этот вывод используется для дифференциации команд от данных. Например, когда на выводе RS установлено значение LOW, мы отправляем команды на ЖК-дисплей (например, установить курсор в определенном месте, очистить дисплей, сдвинуть дисплей вправо и т. д.). Когда вывод RS установлено значение  HIGH, мы отправляем данные/символы на ЖК-дисплей.
  • R/W (Read/Write) — вывод предназначен для контроля того, что необходимо сделать — считать данные или передать их на ЖК-дисплй. Поскольку мы просто используем этот ЖК-дисплей в качестве устройства вывода, то достаточно на этот вывод подать HIGH уровень, тем самым мы перейдем в режим записи.
  • EN (Enable) — вывод используется для включения дисплея. Это означает, что когда на этом выводе  установлено значение LOW ЖК-дисплей не реагирует на то, что происходит с R/W, RS и линиями шины данных. Когда же на этом выводе HIGH ЖК-дисплей обрабатывает входящие данные.
  • D0-D7 (Data Bus) — это выводы, по которым передаются 8-битные данные на дисплей. Например, если мы хотим отобразить символ «A» в верхнем регистре, мы отправляем на LCD дисплей 0100 0001 (в соответствии с таблицей ASCII) .
  • AK (Anode & Cathode) используются для управления подсветкой LCD дисплея.

Как подключить LCD дисплей 1602 к Arduino

При сборке своего металлоискателя у меня на руках оказался LCD дисплей 1602, построенный на контроллера HD44780. Решил не упустить возможность и подключить его к своему китайскому аналогу Arduino UNO.

Вот такой дисплей 1602 будем сегодня подключать к Arduino.

Купить подобный экран можно за $1.25.

Цифры «1602» говорят о том, что дисплей состоит из 2-х строк, по 16 символов. Это довольно распространённый экран, с применением которого народ конструирует часы, тестеры и прочие гаджеты. Дисплей бывает с зелёной и голубой подсветкой.

  • К дисплею я припаял гребёнку контактов, что бы можно было легко подключать провода.

Подключать дисплей 1602 к Arduino будем через 4-битный вариант параллельного интерфейса. Существует вариант и 8-битного интерфейса,  но при нём задействуется больше проводов, а выигрыша в этом мы не увидим.

Кроме дисплея  и Arduino, нам понадобятся провода и переменный резистор на 10кОм. Резистор подойдёт любой марки, лишь бы был необходимого номинала.

Питание на дисплей подаётся  через 1-й (VSS) и 2-й (VDD) выводы. К выводам 15 (А) и 16 (K) — подаётся питание на подсветку дисплея.

Поскольку для питания и подсветки используется одно напряжение +5В, запитаем их от пинов Arduino «5V» и «GND».

Главное не перепутать полярность, иначе можно спалить электронику дисплея.

3-й вывод (V0) подключаем к ножке переменного резистора, им будем управлять контрастностью дисплея. Резистор можно не использовать, а вывод «V0» подключить к GND. В таком случае контрастность будет максимальной и не будет возможности её плавной регулировки.

5-й вывод (RW) используется для чтения с дисплея либо для записи в него. Поскольку мы будем только писать в дисплей, соединим этот вывод с землёй (GND).

Выводы:  4-й (RS), 6-й (E), 11-й (D4), 12-й (D5), 13-й (D6), 14-й ( D7) подключаем к цифровым пинам Arduino. Не обязательно использовать пины те же что и у меня, можно подключить к любым цифровым, главное затем правильно их выставить в скетче.

  1. Моя подключённая Ардуина, осталось соединить её с компьютером через USB и залить скетч.
  2. В примете будем использовать скетч из стандартного набора.

  • В Arduino IDE выбираем «Файл» — «Образцы» — «LiquidCrystal» — «HelloWorld».
  • Давайте посмотрим на код скетча.

В строке «LiquidCrystal lcd», в скобках, выставлены цифровые пины, которые задействованы на Arduino. Пины выставляются в такой последовательности: RS, E, DB4, DB5, DB6, DB7. Если вы задействовали другие цифровые пины, при подключении дисплея, впишите их в нужной последовательности в скобках.

В строке «lcd.print(«hello, world!»);» выводится приветствие на дисплей, по-умолчанию это надпись «hello, world!», её можно поменять на любую свою, пишем на латинице.

Загружаем скетч в Arduino и вот результат. Вместо «hello, world!» я вписал свой сайт. Строкой ниже, таймер производит отсчёт времени.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:

Примеры скетчев

Описание функций и методов библиотеки LiquidCrystal I2C:

  • home() и clear() – возврат курсора в начало экрана, вторая это очистка экрана курсор после очистки переходи в начало;
  • write(ch) – вывод символа на экран;
  • cursor() и noCursor() – показать/скрыть курсор на экране;
  • blink() и noBlink() – включение/выключение мигание курсора;
  • display() и noDisplay() – подключаем/отключаем дисплей;
  • scrollDisplayLeft() и scrollDisplayRight() – смещаем экран на один символ вправо/влево;
  • autoscroll() и noAutoscroll() – позволяет вкл./выкл. режим автопрокрутки. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране;
  • leftToRight() и rightToLeft() – направление выводимых символов слева направо или справа налево;
  • createChar(ch, bitmap) – создание символа с кодом ch (0 – 7), для создания черных и белых точек

7 Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов «A», «B» и «С» на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами,
первый из которых определяет номер столбца таблицы, а второй — номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E
(Enable), а линия RS
(Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.

Опять, первые два импульса Enable
соответствуют инструкции Home()
(0000 0010 2) — возврат каретки на позицию (0; 0), а вторые два — вывод на ЖК дисплей хранящийся в ячейке памяти 3 10 (0000 0011 2) символ «Сердце» (инструкция lcd.createChar(3, heart);
скетча).

LCD дисплей
– частый гость в проектах ардуино. Но в сложных схемах у нас может возникнуть проблема недостатка портов Arduino из-за необходимости подключить экран, у которого очень очень много контактов. Выходом в этой ситуации может стать I2C /IIC
переходник, который подключает практически стандартный для Arduino экран 1602 к платам Uno, Nano или Mega всего лишь при помощи 4 пинов. В этой статье мы посмотрим, как можно подключить LCD экран с интерфейсом I2C, какие можно использовать библиотеки, напишем короткий скетч-пример и разберем типовые ошибки.

Жидкокристаллический дисплей (Liquid Crystal Display) LCD 1602
является хорошим выбором для вывода строк символов в различных проектах. Он стоит недорого, есть различные модификации с разными цветами подсветки, вы можете легко скачать готовые библиотеки для скетчей Ардуино. Но самым главным недостатком этого экрана является тот факт, что дисплей имеет 16 цифровых выводов, из которых обязательными являются минимум 6. Поэтому использование этого LCD экрана без i2c добавляет серьезные ограничения для плат Arduino Uno или Nano. Если контактов не хватает, то вам придется покупать плату Arduino Mega или же сэкономить контакты, в том числе за счет подключения дисплея через i2c.

Краткое описание пинов LCD 1602

Давайте посмотрим на выводы LCD1602 повнимательней:

Каждый из выводов имеет свое назначение:

  1. Земля GND;
  2. Питание 5 В;
  3. Установка контрастности монитора;
  4. Команда, данные;
  5. Записывание и чтение данных;
  6. Enable;

7-14. Линии данных;

  1. Плюс подсветки;
  2. Минус подсветки.

Технические характеристики дисплея:

  • Символьный тип отображения, есть возможность загрузки символов;
  • Светодиодная подсветка;
  • Контроллер HD44780;
  • Напряжение питания 5В;
  • Формат 16х2 символов;
  • Диапазон рабочих температур от -20С до +70С, диапазон температур хранения от -30С до +80 С;
  • Угол обзора 180 градусов.

Схема подключения LCD к плате Ардуино без i2C

Стандартная схема присоединения монитора напрямую к микроконтроллеру Ардуино без I2C выглядит следующим образом.

Из-за большого количества подключаемых контактов может не хватить места для присоединения нужных элементов. Использование I2C уменьшает количество проводов до 4, а занятых пинов до 2.

Где купить LCD экраны и шилды для ардуино

Модуль LCD1602+I2C с синим экраном, совместим с Arduino

Простой дисплей LCD1602 (зеленая подсветка) дешевле 80 рублей

Большой экран LCD2004 с I2C HD44780 для ардуино (синяя и зеленая подсветка)

Дисплей 1602 с IIC адаптером и синей подсветкой

Еще один вариант LCD1602 со впаянным I2C модулем

Модуль адаптера Port IIC/I2C/TWI/SPI для экрана 1602, совместим с Ардуино

Дисплей с RGB-подсветкой! LCD 16×2 + keypad +Buzzer Shield for Arduino

Шилд для Ардуино с кнопками и экраном LCD1602 LCD 1602

LCD дисплей для 3D принтера (Smart Controller for RAMPS 1.4, Text LCD 20×4), модулем кардридера SD и MicroSD-

Библиотеки для работы с i2c LCD дисплеем

Для взаимодействие Arduino c LCD 1602 по шине I2C вам потребуются как минимум две библиотеки:

  • Библиотека Wire.h для работы с I2C уже имеется в стандартной программе Arduino IDE.
  • Библиотека LiquidCrystal_I2C.h, которая включает в себя большое разнообразие команд для управления монитором по шине I2C и позволяет сделать скетч проще и короче. Нужно дополнительно установить библиотеку После подключения дисплея нужно дополнительно установить библиотеку LiquidCrystal_I2C.h

После подключения к скетчу всех необходимых библиотек мы создаем объект и можем использовать все его функции. Для тестирования давайте загрузим следующий стандартный скетч из примера.

#include
#include // Подключение библиотеки
//#include // Подключение альтернативной библиотеки
LiquidCrystal_I2C lcd(0x27,16,2); // Указываем I2C адрес (наиболее распространенное значение), а также параметры экрана (в случае LCD 1602 — 2 строки по 16 символов в каждой
//LiquidCrystal_PCF8574 lcd(0x27); // Вариант для библиотеки PCF8574
void setup()
{
lcd.init(); // Инициализация дисплея
lcd.backlight(); // Подключение подсветки
lcd.setCursor(0,0); // Установка курсора в начало первой строки
lcd.print(«Hello»); // Набор текста на первой строке
lcd.setCursor(0,1); // Установка курсора в начало второй строки
lcd.print(«ArduinoMaster»); // Набор текста на второй строке
}
void loop()
{
}

Описание функций и методов библиотеки LiquidCrystal_I2C:

  • home() и clear() – первая функция позволяет вернуть курсор в начало экрана, вторая тоже, но при этом удаляет все, что было на мониторе до этого.
  • write(ch) – позволяет вывести одиночный символ ch на экран.
  • cursor() и noCursor() – показывает/скрывает курсор на экране.
  • blink() и noBlink() – курсор мигает/не мигает (если до этого было включено его отображение).
  • display() и noDisplay() – позволяет подключить/отключить дисплей.
  • scrollDisplayLeft() и scrollDisplayRight() – прокручивает экран на один знак влево/вправо.
  • autoscroll() и noAutoscroll() – позволяет включить/выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.
  • leftToRight() и rightToLeft() – Установка направление выводимого текста – слева направо или справа налево.
  • createChar(ch, bitmap) – создает символ с кодом ch (0 – 7), используя массив битовых масок bitmap для создания черных и белых точек.

Альтернативная библиотека для работы с i2c дисплеем

В некоторых случаях при использовании указанной библиотеки с устройствами, оснащенными контроллерами PCF8574 могут возникать ошибки. В этом случае в качестве альтернативы можно предложить библиотеку LiquidCrystal_PCF8574.h. Она расширяет LiquidCrystal_I2C, поэтому проблем с ее использованием быть не должно.