Безопасность и практика
Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.
Четыре правила техники безопасности для новичков:
- Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
- Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
- При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
- Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.
ДИСК С КНИГАМИ из серии для » чайников» [программирование ., eBook (изначально компьютерное)]
Жанр: программирование .Издательство: издательский дом » Вильямс»Страна: россияОписание: ДИСКА: 1.Windows XP 2.Office 2003 3.Internet 4.Internet Explorer 6 5.Windows Server 2003 6.Word 2002 7.Excel 2002 8.Outlook 2002 9.Linux 10.Модернизация и ремонт ПК 11.Основы программирования 12.Visual C++.NET 13.Visual Basic .NET 14.Dreamweaver MX 15. Цифровая фотография Серия книг «… для чайников» специально предназначенна для начинающих пользователей. Книги написаны доступным языком и, главное, в совершенно не обидном для «чайников» стиле. Они не отпугивают, а приучают искать ответы на в …
В помощь радиолюбителю.
Насколько трудно дается электроника начинающим? Как с нуля освоить электронику, что бы собирать электронные конструкции любой сложности? На эти вопросы, или на часть из них найдутся ответы в представленной книге. Вы узнаете какие бывают электронные компоненты (детали): резисторы, конденсаторы, диоды, стабилитроны, транзисторы, микросхемы и другие полупроводниковые приборы — их назначение, схематическое представление, использование и функциональные особенности.
Изучите теоретические основы построения электронных схем и принципы их чтения. Практические рекомендации из книги содержат советы по работе с паяльником, способам проверки работоспособности электронных компонентов, изготовлению печатных плат и готовых рабочих устройств. Также приводится описание софта для радиоконструктора, практические советы для радиолюбителей самодельщиков и небольшой справочник по радиодеталям. Этот учебник написан доступным и простым языком, что даст возможность начинающим быстро освоить основы электроники.
ISBN 978-5-477-00691-5
Оглавление книги.
Глава 1
Уроки юного конструктора 9
Знакомство с электричеством и другими величинами измерения 9
Ознакомление с радиодеталями 12
Резисторы 13
Конденсаторы 17
Полупроводниковые приборы 18
Транзисторы 19
Стабилитроны 20
Диоды 21
Прочие радиодетали 22
Глава 2
Инструмент и устройства
Рабочее место радиолюбителя 24
Измерительный прибор 25
Пользуемся цифровым прибором 25
Измерение постоянного и переменного напряжения 26
Измерение постоянного тока 27
Измерение сопротивления 27
Прозвонка диодов 28
Измерение и проверка емкостей и индуктивностей 29
Разное 30
Пользуемся стрелочным прибором 31
Проверка резисторов 33
Проверка конденсаторов 33
Проверка катушек индуктивности 35
Проверка низкочастотных дросселей и трансформаторов 35
Проверка диодов 36
Проверка тиристоров 37
Проверка транзисторов 38
Секреты правильной пайки 39
Глава 3
Основные правила безопасности 42
Правила необходимо знать и соблюдать! 42
Действие электрического тока на человека 44
Что представляет собой молния 46
Глава 4
Закон Ома 48
Основной принцип закона Ома 48
Немного истории 50
Глава 5
Мои первые самоделки 55
Вспышки на светодиоде 55
Электронная канарейка 57
Индикатор занятой телефонной линии 59
Глава 6
Знакомство с микросхемами 62
Микросхемы широкого применения 62
Глава 7
Применение специализированных микросхем на практике 68
Мой первый усилитель мощности 68
Регулятор громкости, баланса и тембра УНЧ 75
Глава 8
Разработка и изготовление печатных плат 77
Основные правила разработки плат 77
Травление печатных плат 84
Радиолюбители советуют 86
Компоновка радиодеталей на плате 87
Глава 9
Профессиональная схемотехника 88
Стереофонический УНЧ с темброблоком 88
Стереофонический приемник FM-диапазона 90
Индикатор выходного сигнала 94
Глава 10
Электричество — друг человека 96
Источник питания своими руками 96
Блок питания для электромеханических часов 98
Подсветка для выключателя 100
Регулятор яркости светильника 101
Фазометр своими руками 102
Искатель скрытой проводки 104
Глава 11
Подборка принципиальных схем 106
Предварительный усилитель 106
УНЧ с необычным темброблоком 107
Музыкальный квартирный звонок 109
Новогодняя гирлянда 112
Автомат периодического включения и выключения нагрузки 113
Универсальное зарядное устройство 115
Цифровые электронные часы 116
Глава 12
Софт радиоконструктора 120
Описание пакета CircuitMaker 120
Подводим итоги 125
Глава 13
Справочный листок 126
Учимся выбирать батарейки 126
Сокращенное обозначение номиналов на резисторах и конденсаторах 131
Цветовая маркировка постоянных резисторов 132
Последовательное и параллельное соединение резисторов и конденсаторов 134
Зарубежные выпрямительные диоды и мосты 135
Микросхемные стабилизаторы напряжения 137
Маркировка и характеристика тиристоров 142
Цоколевка транзисторов 143
Музыкальные синтезаторы серии УМС 150
Англо-русский технический словарик 152
Похожая литература
Конструируем роботов на ScratchDuino
Хорвиц и Хилл — искусство схемотехники
Интернет вещей
Поиск неисправностей и ремонт электронной аппаратуры без схем
Ремонт электронных модулей стиральных машин
107
Поделиться
Время паять!
Когда-нибудь при изучении электроники и схемотехники обязательно настанет время взять в руки паяльник. Скорее всего, это случится, когда вы возьметесь за собственный проект, в котором вам будут нужны немодульные детали. Тогда придется делать новые модули или травить схему. В любом случае — паять вам придется. А вот чем — это уже отдельный вопрос.
Меня вполне устраивает мой паяльник за 200 рублей (можно сказать, собираю все на коленках!). Однако, какой бы вы не выбрали паяльник, элементарную технику безопасности никто не отменял: заранее убирайте посторонние (в особенности — легко воспламеняющиеся) предметы со стола, обеспечьте проветривание и не пренебрегайте защитными очками — они, скорее всего, будут продаваться там же, где и паяльник.
Подобным паяльником пользуюсь я
Прежде чем покупать что-то серьезное типа паяльной станции, рекомендую приобрести простой паяльник и попробовать поработать с ним. Стабильная температура, которую обеспечит станция, бывает полезной при пайке микросхем, но в остальных случаях не особенно и нужна. Кстати, по личному опыту пайки SMD могу сказать, что это реально сделать и обычным паяльником, просто нужно иметь пару запасных деталей на случай, если спалите.
Паяльники, конечно, тоже бывают разные. Рекомендую брать устройство со сменным жалом — для большей гибкости. Нагреватель обычно советуют керамический, как более долговечный. Однако вам, скорее всего, не нужно будет работать с ним каждый день, поэтому подойдет и более дешевый — нихромовый.
При покупке паяльника стоит взять и подставку для него: ждать, пока инструмент остынет или нагреется, нудно и неблагодарно. Особенно тоскливо, если вы должны держать его все время в руке. И даже не думайте оставлять его в «безопасном состоянии» на столе и уходить курить!
Паяльная станция
Что до паяльных станций, то они куда безопаснее и удобнее, однако и значительно дороже. По сути, паяльная станция — апгрейд паяльника. Самая простая и недорогая версия будет включать в себя подставку и контрольный модуль. В нем — монитор для отображения текущей температуры и ручка-регулятор. Комплектация паяльной станции может варьироваться в зависимости от цены. В комплекте может быть вакуумный пинцет, оловоотсос, фен для локального подогрева и еще много интересных фишек облегчающих вам жизнь.
Основные разделы и направления
Самоделки своими руками: электрика DIY
Сюда относятся:
- исследования протекания процессов в вакууме и твёрдой массе;
- изучение квантовой электроники;
- путь от прототипа к готовому устройству.
Вакуумные среды и твёрдые тела
Сфера вакуумной электроники занимается следующим:
- проектирование и производство электронных ламп;
- изготовление сверхчастотных магнетронов, клистронов и аналогичных приборов;
- производство фотоэлементов, индикаторов и различных фотоэлектронных устройств.
Электроника в твёрдых телах занимается изучением и совершенствованием полупроводников, а также изготовлением на их основе радиоэлектронных компонентов
Вместе с этим этот раздел уделяет внимание следующим вопросам:
- проектирование и создание электронных сфер, связанных с выращиванием кристаллов;
- нанесение диэлектрических и металлизированных плёнок на поверхности полупроводников;
- создание теоретической базы, подкреплённой практикой, по производству технологии выращивания плёнок заданной формы и с соответствующими техническими характеристиками;
- поиск новых решений по управлению процессами, происходящими на поверхности полупроводников;
- совершенствование и разработка новых технологий по получению наночастиц.
Квантовая электроника
Квантовая электроника изучает и создаёт приборы и устройства, занимающиеся обработкой информационных сигналов на основе движения элементарных частиц. Квантовая теория о свойствах электронов и других атомных элементов стала базой освоения технологий, создающих мощные лазеры. На основе последних разработок квантовой электроники появилась перспектива построения квантового компьютера.
От прототипа к готовому продукту
В связи с совершенствованием электронных схем в геометрической прогрессии путь от прототипа нового электронного устройства до массового производства готового продукта может занимать от 2,3-х до нескольких месяцев. Это заметно по постоянному обновлению ассортимента на рынке электронной аппаратуры.
Полученные знания основ электроники помогут новичку в этой области устранить мелкие поломки, выявить и заменить повреждённые компоненты электронных схем. Это позволит не выглядеть «чайником» в глазах электротехников, выполняющих ремонтные работы бытовых электронных приборов, что иногда приносит существенный экономический эффект.
Пути совершенствования (микроминиатюризация)
С момента появления твердотельной электроники она начала развиваться темпами математической прогрессии. Активные радиоэлементы, по сравнению со старыми прототипами, уменьшились по размеру в тысячи раз. Некоторые детали стали измеряться в нанометрах. Большие электрические схемы стали помещаться в одном чипе (микросхеме).
Внедрение новых технологий открыло путь резкому развитию микроэлектроники. Это видно по совершенствованию приборов сотовой связи. За относительно короткий срок простой сотовый телефон превратился в смартфон с огромными возможностями. Громоздкие по габаритам маломощные компьютеры были заменены на ноутбуки. Появилось много различных миниатюрных электронных гаджетов. Прогресс в совершенствовании продуктов электронной промышленности с каждым днём только набирает обороты.
Познавательная электроника для начинающих должна начинаться с усвоения учебников, видео программ по основам цифровой электроники. Нужно понимать, что такое микросхематика, практическая электроника, как составляются цепи в электронных схемах. Самоучители пошагово дадут возможность ученику познать основы электроники.
Плата электронной схемы
Шаг 5: Цветовая маркировка резисторов
Мы уже познакомились с различными типами резисторов и характеристиками, что им свойственны. Однако, для того, чтобы использовать элемент по прямому назначению необходимо точно знать величину сопротивления.
Значение сопротивления, допустимая мощность – обычно наноситься на сам резистор, как числа или буквы (это в том случае, когда размеры достаточно большие). Но когда элементы небольшого размера (углеродные или пленочные) спецификация должна отображаться иным способом, поскольку текст был бы не читаемый.
В таких случаях на поверхность наносят полосы, что указывают значения сопротивление и рассеиваемую мощность. Эти линии – цветовой код резисторов. Международная универсальная схема цветового кода была разработана много лет назад, как простой и быстрый способ идентификации резисторов независимо от того, какого они размера и состояния. Маркировка всегда читается слева направо (с широкой полосы), путем сопоставления цвета первой полоски с соответствующим номером в колонке цифр-цвета (это первая цифра значения сопротивления) и т.д.
Золотая или серебряная полоса (допуск) всегда является последней полосой. Кроме того можно измерить сопротивление мультиметром, ведь в некоторых случаях – это является единственным способом определения значения сопротивления (например, когда цветные полосы стёрты).
Резисторы поверхностного монтажа
Резисторы поверхностного монтажа или SMD резисторы — элементы прямоугольной формы, что предназначены для монтажа непосредственно на поверхность печатной платы. SMD резистор состоит из керамической подложки, на который нанесён толстый слой оксида металла. Значение сопротивления контролируется путем изменения желаемой толщины, длины или типа осажденной пленки. Благодаря металлическим клеммам с обоих концов, элементы припаиваются непосредственно на печатную плату. SMD маркируются 3-мя или 4-мя цифрами (кодом) для обозначения заданного сопротивления. Стандартные резисторы SMD помечены кодом с тремя цифрами, в котором первые две цифры представляют первые два числа значения сопротивления, а третья цифра – множителем x1, x10, x100 и т.д. Например:
- “103” = 10 × 1,000 Ом = 10 KΩ
- “392” = 39 × 100 Ом = 3.9 KΩ
- “563” = 56 × 1,000 Ом = 56 KΩ
- “105” = 10 × 100,000 Ом = 1 MΩ
Резисторы поверхностного монтажа, у которых значение меньше, чем 100 Ом, обычно маркируются: “390”, “470”, “560” с заключительным нулём, представляющим множитель 10^0, который эквивалентен 1. Например: “390” = 39 × 1Ω = 39 Ом или 39RΩ “470” = 47 × 1Ω = 47 Ом или 47RΩ (значения сопротивления с буквой “R” обозначают положение десятичной запятой, например 4R7 = 4.7Ω). Резисторы поверхностного монтажа, которые имеют маркировку «000» или «0000» называются 0 Ом, поскольку эти элементы имеют нулевое сопротивление.
Виды соединений
Последовательное соединение:
При последовательном соединении элементов через них протекает одна и та же сила тока:
I = I1 = I2 = I3
При последовательном соединении сопротивлений, общее сопротивление цепи равно сумме этих сопротивлений:
Rобщ = R1 + R2 +R3
При последовательном соединении резисторов сумма падения напряжений на них равна напряжению на зажимах источника:
Uобщ = U1 + U2 +U3
Параллельное соединение:
Общее сопротивление цепи при параллельном соединении резисторов всегда меньше наименьшего из резисторов:
1/Rобщ = 1/R1 + 1/R2
Основы радиотехники
Закон Ома для участка цепи
Из Закона Ома следует:
чем больше сопротивление R, тем меньше сила тока I при одном и том же напряжении U между концами проводника.
Законы Кирхгофа
Первый Закон:
Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.
I1 – ток втекающий в узел,
I2, I3 – токи вытекающие из узла.
I1 = I2 + I3
или
I1 – I2 – I3 = 0
Второй Закон:
В замкнутом контуре электрической цепи сумма всех ЭДС равна сумме падения напряжения в сопротивлениях того же контура.
В статье приведен основной материал для начинающих осваивать ремонт телефонов и планшетов. Обучение пайке и диагностике плат, начинаем с основ радиотехники. Это необходимый фундамент, для понимания логики работы электронных устройств.
Как проверить напряжение мультиметром
черный провод мультиметра необходимо подключить к разъему „COM”;
красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание! Подключение проводов иным образом может привести к повреждению прибора!)
мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
металлическими наконечниками щупов мультиметра касаемся выводов батарейки… но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
выключаем мультиметр.
ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата. Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:
Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:
- заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
- частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.
Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать здесь). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:
Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.
Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.
Держатель для платы
Материал: АБС + металл, размер зажима печатной платы (max): 20X14 см…
Подробнее
Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.
Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.
Далее. Нам понадобится 4 короткие перемычки (для соединения линий питания платы) и 2 длинные, лучше если они будут красного и синего цвета.
Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!
Напряжение
Мера силы, с которой носители электрического заряда хотят приблизиться друг к другу. Упрощенно, но отражает суть. Выше значение — больше сила притяжения зарядов. Когда показатель равен нулю — притяжения нет. Величина измеряется между двумя точками (как измеряется высота гор относительно уровня моря). Всегда нужно иметь две точки для сравнения.
Для наглядности часто используют аналогию с более осязаемой проточной водой. Например, водный поток, собранный перед плотиной. Уровень измеряется между двумя условными точками. Больше жидкости быстрее будет вытекать через шлюз в плотине.
Стоит помнить: величина устойчива и может долго «существовать». Не используемая долгое время батарейка AA будет сохранять заряд в течение нескольких лет, как река перед плотиной при закрытом шлюзе.
Общая теория радиолокации и радионавигации. Распространение радиоволн
Название: Общая теория радиолокации и радионавигации. Распространение радиоволнАвторы: А.Н. Фомин, В.А. Копылов, А.А. Филонов, А.В. АндроновГод: 2017Издательство: СФУЯзык: русскийФормат: pdfСтраниц: 318Размер: 11 mbВ данном учебнике рассмотрены физические процессы, происходящие при распространении радиоволн вблизи поверхности и в атмосфере Земли
Особое внимание уделено описанию физических процессов, происходящих в линиях передачи энергии СВЧ-диапазона. Подробно изложены в теоретическом и практическом плане конкретные типы согласующих устройств, которые применяются в прямоугольных волноводах, коаксиальных линиях для обеспечения передачи максимальной мощности в нагрузку
С чего начать изучение основ электротехники
Радиотехника для начинающих
Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.
Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК
Учебник всегда будет под рукой.
Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.
Что изучает электротехника
Электроэнергетика и электротехника
Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.
Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.
Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.
Электроника для всех
Закон Ома
Закон Ома |
Сила тока в цепи пропорциональна напряжению и обратно пропорциональная полному сопротивлению цепи. I = U/RU – величина напряжения в вольтах.R – сумма всех сопротивлений в омах.I – протекающий по цепи ток. |
Закон Ома на практике |
Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R
поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, чтоUисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.
Закон Кирхгоффа.
Закон Кирхгоффа на примере |
Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.
Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.Р = U * I Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:P= R * I2 Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии. Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.
Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.
Часть 2. Резистор. Конденсатор. Индуктивность
Меры предосторожности
Разбираемся с электроизмерительными приборами
В работе радио,- и телемастера нужно избегать рисков воздействия опасного для жизни и здоровья человека напряжения. Нельзя оставлять включёнными приборы и инструменты, покидая рабочее место. Надо пользоваться единым выключателем, который прерывает электропитание всей системы энергообеспечения рабочего стола радиомастера.
Для новичка есть все возможности овладеть радиоделом. В средствах массовой информации всегда можно найти нужный справочный материал. Рынок радиотехники предоставляет широкий выбор электронных устройств, инструментов, материалов и измерительных приборов.