Изготовление катушки Тесла своими руками в домашних условиях
Проектирование и создание устройства не представляет сложности для людей, знакомых с принципами электротехники и электричества. Однако даже новичку под силу будет справиться с этой задачей, если провести грамотные расчёты и скрупулёзно следовать пошаговой инструкции. В любом случае до начала работ следует обязательно ознакомиться с правилами техники безопасности для работ с высоким напряжением.
Схема
Катушка тесла представляет собой две катушки без сердечника, посылающих большой импульс тока. Первичная обмотка состоит из 10 витков, вторичная — из 1000. Включение в схему конденсатора позволяет снизить до минимума потери искрового заряда. Выходная разность потенциалов превышает миллионы вольт, что позволяет получать эффектные и зрелищные электрические разряды.
Перед тем как взяться за изготовление катушки своими руками, необходимо изучить схему её строения
Инструменты и материалы
Для сбора и последующего функционирования катушки Тесла понадобится подготовить следующие материалы и оборудование:
- трансформатор с выходным напряжением от 4 кВ 35 мА;
- болты и металлический шарик для разрядника;
- конденсатор с рассчитанными параметрами ёмкости не ниже 0,33 µF 275 В;
- ПВХ труба диаметром 75 мм;
- эмалированная медная проволока сечением 0,3–0,6 мм — пластиковая изоляция предотвращает пробой;
- полый металлический шар;
- толстый кабель или трубка из меди сечением 6 мм.
Пошаговая инструкция по изготовлению катушки
В качестве источника питания также можно использовать мощные батареи
Алгоритм изготовления катушки состоит из следующих этапов:
- Подбор источника питания. Оптимальный вариант для новичка — трансформаторы для неоновых вывесок. В любом случае выходное напряжение на них не должно быть ниже 4кВ.
- Изготовление разрядника. От качества этого элемента зависит общая производительность устройства. В самом простом случае это могут быть вкрученные на расстоянии в несколько миллиметров друг от друга обыкновенные болты, между которыми установлен металлический шарик. Расстояние подбирают таким образом, чтобы искра пролетала в том случае, когда только разрядник подключён к трансформатору.
- Расчёт ёмкости конденсатора. Резонансную ёмкость трансформатора умножают на 1,5 и получают искомую величину. Конденсатор с заданными параметрами разумнее приобрести готовый, поскольку при отсутствии достаточного опыта сложно собрать этот элемент самостоятельно, чтобы он работал. При этом могут возникнуть сложности с определением его номинальной ёмкости. Как правило, при отсутствии большого элемента конденсаторы катушки представляют собой сборку из трёх рядов по 24 конденсатора в каждом. При этом на каждом конденсаторе должен быть установлен гасящий резистор 10 МОм.
-
Создание вторичной катушки. Высота катушки равна пяти её диаметрам. Под эту длину подбирают подходящий доступный материал, например, поливинилхлоридную трубу. Её обматывают медной проволокой в 900–1000 витков, а затем покрывают лаком для сохранения эстетичного внешнего вида. К верхней части прикрепляют полый шар из металла, а нижнюю часть заземляют. Желательно продумать отдельное заземление, так как при использовании общедомового велика вероятность выхода из строя других электроприборов. Если готовый металлический шар отсутствует, то его можно заменить другими аналогичными вариантами, выполненными самостоятельно:
- обернуть пластиковый шар фольгой, которую следует тщательно разгладить;
- обмотать алюминиевой лентой гофротрубу, свёрнутую в круг.
- Создание первичной катушки. Толщина трубки препятствует резистивным потерям, с увеличением толщины уменьшается её способность к деформированию. Поэтому сильно толстый кабель или трубка будут плохо сгибаться и трескаться в местах сгибов. Шаг между витками выдерживают в 3–5 мм, количество витков зависит от общих габаритов катушки и подбирается экспериментально, также как и место подключения устройства к источнику питания.
- Пробный запуск. После выполнения первичных настроек запускают катушку.
Устройство катушки
Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:
Первичная обмотка крепится внизу. Заземление обязательно. Также нужно предусмотреть разъемы для крепления проводов от источника питания. Вторичная обмотка. Изготавливают из медной проволоки, покрытой эмалью. Примерное количество витков – 800
Важно, чтобы обмотка не расплеталась. Тороид
Задача данного элемента – снизить рабочие показатели резонансной частоты. Цель – увеличить характеристики рабочего поля. Изолятор. Его еще называют защитным кольцом. Это разомкнутый медный контур, устанавливаемый для случаев, когда длина вторичной обмотки меньше чем у стримера. Заземление. Здесь дело не только в безопасности. Отсутствие «земли» приводит к тому, что заряды уходят в воздух, а не образуют замкнутые кольца.
Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.
Технические характеристики Теслы
- В первичной цепи установлен ограничитель тока на 1400 А.
- Потребление энергии в сети около 20 А.
- Резонансная частота составляет 42 кГц.
- Предельная длина искры 3 метра.
- Тесла имеет более 2 метра в высоту.
- Диаметр верхнего тороида – около 1 метра.
Разумеется ни одна DRSSTC не может функционировать без хорошего резонансного конденсатора, и именно там появилась самая большая проблема – чем выше емкость, тем лучше эффект по искре, но и тоньше кошелек. Минимальное напряжение пробоя составляет 8 кВ, однако чем больше, тем лучше. После многих расчетов решено было принять параметры 600nF / 10kV, а это означает необходимость покупки 100 конденсаторов CDE942C20P15kF. Они не единственные конденсаторы подходящие для этой цели, но другие еще дороже.
Следующим шагом было проектирование механической части, расположение ключевых элементов и т. д. Первичка вызвала немало проблем. Одной из концепций была коническая обмотка, но с другой стороны, из-за гораздо лучшего распределения поля остановились на плоской. Обмотка выполнена из мягкой меди диаметром 15 мм с толщиной стенки 1 мм.
Другим важным элементом катушки Тесла является вторичная обмотка. Это классическое решение, которое заключается в использовании в качестве формы под неё канализационной трубы из ПВХ диаметром 200 мм и высотой 1 м. Катушка содержит около 2300 витков проволоки 0,4 мм. Это почти 2 кг меди и около 1,5 км кабеля. Обмотка традиционно залита лаком.
Тороиды представляют собой классическую конструкцию, изготовленную из вентиляционных гофрированных труб. Использование двух тороидов улучшает распределение электрического поля вокруг обмоток, благодаря чему искры неохотно идут внутрь. Также использовались защитные катушки в количестве 2 штуки – одна выше, другая – под первичной плоскостью. Верхняя катушка провода является временной.
Нижняя часть корпуса электроники будет покрыта сеткой, пока закрыта только лицевая сторона, чтобы иметь легкий доступ к деталям во время ввода Теслы в эксплуатацию.
Разумеется, для мощных транзисторов требуется массивный радиатор. Он также охлаждается двумя мощными 120-миллиметровыми вентиляторами. Хотя общее количество выделяемого тепла не велико – большой радиатор и кулеры нужны обязательно, как результат – во время работы радиатор практически холоден.
Следующий ключевой элемент – силовые фильтрующие конденсаторы. Поскольку устройство работает с мощным импульсом, для импульсной работы требуются высоковольтные электролиты значительной мощности и низким импедансом (low esr).
Получение постоянного напряжения 650 В DC несложно, достаточно удвоить напряжение сети 220 В.
Необходимо поставить диодный мост с напряжением выше 320 В (после выпрямления), в частности около 600 В постоянного тока, также были необходимы электролиты способные работать с таким напряжением, однако самое высокое напряжение, которое когда-либо встречалось на любом электролите, было 500 В, но и этого все еще недостаточно. Поэтому необходимо последовательно подключать два электролитических конденсатора, что означает половину емкости и потребность сразу в четырех конденсаторах.
Контроллер управляет промежуточным мостом на MOSFET. Однако на этот раз промежуточный мост питается стабилизированным напряжением 80 В, которое выдает специально сконструированный трансформатор, управляющий затворами транзисторов IGBT. Трансформация этого трансформатора составляет 4: 1: 1: 1: 1. Эта конструкция позволяет получить типичные 20V на затворах, и его применение направлено на значительное сокращение времени их перезарядки.
Молнии безумно громкие и невероятно яркие, но красота требует жертв, поэтому расходы превышают 1000 долларов.
Обсудить статью БОЛЬШАЯ САМОДЕЛЬНАЯ КАТУШКА ТЕСЛА DRSSTC
Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.
Альтернативная энергетика
Сторонники традиционной физики и энергетики отрицают возможность создания работоспособного генератора, оперируя существующими понятиями, законами и определениями. Приводится масса доказательств, что подобные устройства не могут существовать на практике, поскольку противоречат закону сохранения энергии.
Сторонники «теории заговора» убеждены, что расчеты генератора существуют, как и его работающие прототипы, но они не предъявляются науке и широкой общественности, поскольку не выгодны современным энергетическим компаниям и могут вызвать кризис экономики.
Энтузиасты неоднократно делали попытки создания генератора, ими построены немало прототипов, но отчеты о работе почему-то регулярно пропадают или исчезают. Отмечено, что периодически закрываются сетевые ресурсы, посвященные альтернативной энергетике.
Это может свидетельствовать о том, что конструкция в действительности работоспособна, и создать генератор своими руками возможно даже в домашних условиях.
Принцип работы
Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.
Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.
Простая схема работы катушки тесла.
Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.
Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.
Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.
Аналогия с качелями
Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.
Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.
Естественно, раскачивать качели нужно не абы как, а в точном согласии с их собственными колебаниями. Количество колебаний качелей в секунду называется “резонансная частота”.
Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.
Будет интересно Как сделать регулятор мощности на симисторе своими руками
Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.
Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).
Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.
Историческая загадка катушки
Если рассматривать катушку Тесло с исторической точки зрения, становится не ясно, почему ученый не развил идею до конца. Ведь это готовый способ передачи энергии на расстоянии без проводов, что существенно уменьшает потери на монтаж сетей, расходники, столбы и изоляцию.
При этом можно было бы забыть о перерывах с электроснабжением, энергию легко и просто получилось бы доставить в любую точку планеты. Как показывает историческая реальность, ученого интересовало совсем другое применение собственного изобретения. Ученый пытался доказать существование эфира, некой субстанции, которая пронизывает все мироздание.
Согласно теории Тесло эта среда упруга, что делает возможным распространение электромагнитных волн. Одной из утопичных идей ученого была выработка энергии из эфира напрямую. Тесла предлагал установить две катушки на полюсах, что в теории должно было создать огромное магнитное поле по всей Земле.
Так электричество могло бы попасть в любую точку планеты. Катушку ученый придумать успел, а вот создавать приемники для них не стал, занимаясь разработкой получения энергии из эфира.
Цель изобретения
По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе.
Если проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями. С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился. С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.
Никола Тесла и его идеи
Что такое катушка Теслы
Создатель прибора, физик-изобретатель Никола Тесла славился своей любовью к грандиозным демонстрациям научных открытий. Однако этот прибор он создал не для того, чтобы поразить современников. Его цель была более амбициозной. Тесла грезил о вечном двигателе.
Чтобы понять задумку ученого, разберемся с устройством прибора и принципом его работы.
Устройство и принцип работы
Катушка Теслы представляет собой «аппарат для производства электрических токов высокой частоты и потенциала», как в сентябре 1896 года презентовал его сам Никола. По своей сути — это резонансный трансформатор, который создает электрический ток высокой частоты.
Трансформатор Теслы состоит из следующих элементов:
Первичная обмотка. Представляет собой цилиндр или конус, также может быть горизонтальной плоскостью. Располагается она внизу устройства, к ней подводятся провода питания. Чтобы катушка производила стримеры (разряды молний), первичная обмотка должна быть обязательно заземлена. Главное условие — обмотка должна иметь низкое сопротивление, чтобы ток легко проходил по ней. Для первичной обмотки используют провода с большим размером сечения.
Вторичная обмотка. Для вторичной обмотки применяют медную проволоку на 800-1000 витков, покрытую эмалью
Важное условие — чтобы витки проволоки плотно прилегали друг к другу и не расплетались. Для вторичной обмотки используют провода меньшего сечения.
Тороид
Эта деталь изобретения Теслы призвана уменьшать резонансную частоту, накапливать энергию и увеличивать рабочее поле прибора. Важно, чтобы наружный диаметр тороида в два раза превосходил значение диаметра вторичной обмотки.
Кольцо защиты. Это незамкнутый виток медного провода, превышающий толщину первичной обмотки, который нужен, если длина стримера больше длины вторичной обмотки. Он служит для защиты первичной обмотки от повреждения ее стримерами. Обязательно нужно заземлить защиту кабелем к земле.
Заземление. Важная часть прибора. Если заземление будет недостаточным, стримеры будут ударять в катушку.
Источник питания. Еще одна составляющая, без которой изобретение Теслы работать не будет.
Принцип работы трансформатора основывается на существовании двух взаимосвязанных магнитных полей. Взаимодействие этих полей производит ионизирующий эффект, благодаря которому мы и видим разряды молний. Одно магнитное поле возникает, когда первичную обмотку подключают к внешнему источнику, второе — когда энергия через магнитное поле начнет передаваться ко вторичной обмотке. При этом все устройства, находящиеся в поле действия катушки, получают заряд энергии беспроводным путем. Ученый мечтал о передаче электричества на Земле таким способом, причем его изобретение позиционировалось как прототип вечного двигателя, когда энергия с одной катушки передается на другую, не ослабевая со временем.
Сборка катушки Тесла самостоятельно дома
Вот мы плавно и подошли к сборке самой установки. Сначала создадим вторичный контур. Плотно без перехлестов наматываем тонкую проволоку диаметром 0,15 мм на длинный каркас. Нужно сделать не менее 1000 витков (но и сильно много не надо). После этого покрываем катушку лаком в несколько слоев (можно использовать и другие материалы), чтобы проволока не повредилась в дальнейшем.
Для другой катушки наматываем на оставшийся каркас толстую проволоку. Всего надо сделать 10 витков. Вторичный контур должен находиться внутри первичного.
Теперь устанавливаем все так, чтобы конструкция не свалилась и первичный и вторичный контуры не столкнулись вместе (именно для этого и нужен каркас). В идеале расстояние между ними должно быть в районе 1 см.
После соединяем все воедино. К плюсу источника питания подсоединяем первичный контур и один резистор, к которому последовательно подключаем другой резистор. К концу второго резистора подключаем вторичный контур и транзистор. Другой конец первичного контура подключаем ко второму контакту транзистора. А третий контакт транзистора подключаем к минусу источника питания.
При подключении важно не перепутать контакты транзистора. Также к нему нужно прикрутить радиатор или другое охлаждение
Все готово, можно пробовать устройство на деле. Однако не стоит забывать о безопасности. Ничего не трогать, только в диэлектрике!
Проверить работоспособность установки можно по наличию стримера или, если такового нет, можно поднести лампочку к катушке, и если она загорится, то все в порядке.
-
Блендер погружной — какой фирмы лучше выбрать для дома. Фото+ видео отзывы
-
Тестер своими руками: инструкция, схемы и решения как сделать простой самодельный прибор. Пошаговая инструкция как сделать тестер из смартфона
-
Регулятор напряжения своими руками: мастер-класс как сделать простейшее устройство по регулировке напряжения
https://youtube.com/watch?v=pC_vTW2d9_o
Понятие эфира и идеи Теслы
Теперь мы знаем, из чего состоит катушка Тесла. Но какова история этого изобретения? Чтобы ответить на этот вопрос, стоит разобраться с тем, что же такое эфир.
В настоящий момент теория эфира не используется в современной физике, так как после появления теории относительности необходимость в понятии «эфир» просто отпала.
Тем не менее, появляются новые взгляды на концепцию эфира, и полностью списывать ее со счетов не стоит. Многие ученые до сих пор ведут споры о том, существует эфир, или нет, а в физике даже появился новый раздел, изучающий этот вопрос (эфиродинамика).
Никола Тесла своими опытами доказывал существование эфира. У ученого была идея использовать эфир как источник энергии. Так, Тесла хотел отказаться от проводной передачи энергии и передавать электричество по всему миру без проводов посредством эфира. Для этого предполагалось на полюсах Земли установить две гигантские катушки.
К сожалению, выбранное Теслой направление не разрабатывалось на более глубоком уровне. Вдобавок его считали странным ученым, который так и не захотел выйти на путь поиска экономических выгод своих исследований. Кроме этого наступала другая эра – время вакуумных изобретений.
Многие архивы Теслы были утеряны при загадочных обстоятельствах. Даже если Тесла и узнал, как получить практически неиссякаемый источник энергии, то сейчас эта информация недоступна. Редкий гений Теслы опередил свое время, а мир оказался просто не готов к его идеям.
Катушка Тесла своими руками
Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.
Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.
Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.
Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.
Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.
Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.
Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.
Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.
Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.
Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.
- Два провода скрепляются, оголенные концы были повернуты в сторону.
- Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
- Подключается питание катушке Тесла своими руками.
- Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
- Заземление второй катушки.
Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.
Тесла и Тунгусский метеорит
Про Тунгусский метеорит сказано более чем много, и я сейчас не буду подробно пересказывать историю этого происшествия. Скажу только, что не все верят в метеорит, природное явление, крушение инопланетного корабля, столкновение с Землей миниатюрной черной дыры (есть и такая версия) или испытание какого-то оружия. Многие уверены, что катастрофа была связана именно с попыткой Николы Теслы передать энергию на большое расстояние.
Лично я к этой версии отношусь довольно скептически, но если ученый смог создать прибор, который мог сотворить такое, то только представьте, какой потенциал имели созданные им технологии, которые мы сейчас используем для развлечения.
Катушка Теслы несет в себе не только красоту, но и опасность.
Прямых доказательств или явных опровержений виновности Николы Теслы во взрыве в Сибири нет. Поэтому оставим версию конспирологами или простым людям для развития фантазии.
Что вызывает статическое электричество.
Как сделать катушку Теслы
На самом деле было несколько некорректно расписывать, как сделать такой прибор дома самостоятельно, так как он может быть очень опасен как для людей, так и для домашней техники. Достаточно просто знать, что это возможно и на YouTube полно роликов о том, как приобщиться к этому явлению.
Добавлю только, что для создания миниатюрной катушки достаточно обзавестись несколькими вещами, которые можно найти в гараже более-менее запасливого ”самоделкина”.
Сделанная в домашних условиях катушка Теслы может даже зажигать лампочки рядом с ней.
По сути вам понадобится только источник питания, небольшой конденсатор, маленькая катушка проводника для первичной обмотки, пара сотен метров тонкой медной эмалированной проволоки для вторичной обмотки, диэлектрическая труба для ее намотки и все.
Если вы решили сделать что-то подобное, то в каждом ролике более точно расскажут, что нужно для эксперимента. Но помните, что без специальной подготовки это может быть смертельно опасно.
Катушка Теслы простыми словами
Представьте себе маятник с тяжелым грузом. Если вводить его в движение, толкая в какой-то определенный момент в одной точке, то амплитуда будет расти по мере увеличения усилия. Но если найти точку, в которой движение будет входить в резонанс, то амплитуда будет расти многократно. В случае с маятником она ограничена параметрами подвеса, но если мы говорим о напряжении, то расти оно может чуть ли не бесконечно. В обычных условиях наблюдается рост напряжения в десятки и даже сотни раз, достигая миллионов вольт даже в далеко не самых мощных приборах.
На Марсе есть электричество, но откуда оно берется?
Пример простого объяснения знаком нам всем с детства. Помните, когда мы раскачивали кого-то на качелях? Так вот, мы же толкали качели в той точке, в которой они максимально быстро разгонялись вниз. Это и есть грубое, но в целом верное объяснение резонанса, который используется в катушке Теслы.
Резонанс может делать великие вещи. В том числе и с электричеством.
В качестве основных элементов сам Никола Тесла использовал конденсатор, который подключался к источнику питания. Именно он и питал первичную обмотку, от которой возникал резонанс во вторичной
Важно было только правильно подобрать частоту тока ”на входе” и материал для вторичной обмотки. Если они не будут соответствовать друг другу, то роста напряжения не будет вовсе или он будет крайне незначительным
Простая схема генератора Теслы
Электроника для самоделок вкитайском магазине.
Для сборки схемы необходимы:
1. Медный эмалированный провод толщиной 0,1-0,3 мм, длиной 200 м.
2. Пластиковая труба диаметром 4-7 cм, длиной 15 см для каркаса вторичной обмотки.
3. Пластиковая труба диаметром 7-10 cм, длиной 3-5 см для каркаса первичной обмотки.
4. Радиодетали: транзистор D13007 и охлаждающий радиатор для него; переменный резистор на 50 кОм; постоянный резистор на 75 Ом и 0,25 вт; блок питания напряжением на выходе 12-18 вольт и током 0,5 ампера; 5. Паяльник, оловянный припой и канифоль.
https://youtube.com/watch?v=9xN_S8-ZYbY
Подобрав нужные детали, начните с намотки катушки. Наматывать следует на каркас виток к витку без перехлёстов и заметных пробелов, примерно 1000 витков, но не менее 600. После этого нужно обеспечить изоляцию и закрепить намотку, лучше всего для этого использовать лак, которым покрыть обмотку в несколько слоёв.
Для первичной обмотки (L1) используется более толстый провод диаметром 0,6 мм и более, обмотка 5-12 витков, каркас для неё подбирается хотя бы на 5мм толще вторичной обмотки.
Далее соберите схему, как на рисунке выше. Транзистор подойдет любой NPN, можно и PNP, но в этом случае необходимо поменять полярность питания, автор схемы использовал BUT11AF, из отечественных, которые ничем не уступают, хорошо подходят КТ819, КТ805. Для питания качера – любой блок питания 12-30В с током от 0,3 А.
Меры безопасности
Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора
Во-вторых, проверить изоляцию обмоток.
Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно
Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.
КТ – это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.
https://youtube.com/watch?v=JoP6q5gGReo
Представляем еще один HV проект – огромная катушка Тесла. После успехов с обычными высоковольтными генераторами, решено было построить что-то действительно большое. Конечно, это была DRSSTC.
Выбор пал на транзисторы Mitsubishi Electronic IGBT – CM300DY24HA, с номинальными параметрами: максимальный непрерывный ток – 300 A, максимум напряжения К-Э 1200 V. Тесты изготовителей tesla в США показали, что эти транзисторы способны выдерживать непрерывный импульс 4 кА (они взрываются примерно на 5 кА в результате насыщения) и могут безопасно использоваться с импульсными токами до 2 кА. Транзисторы защищены ТВС, способными рассеивать около 12 кВт, а также 5 мкФ / 1 кВ на электропитании.