Описание регулируемого стабилитрона tl431. схемы включения, цоколевка, аналоги, datasheet

Содержание

Цоколёвка tl341

TL 341 представляет собой трёхвыводную микросхему. Каждая ножка имеет собственное название 1 — reference (выход), 2 — anode (анод) и 3 — catode (катод).

На практике цоколёвка бывает различной и зависит от типа корпуса выбранного производителем при изготовлении изделия. TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23. Распиновка tl431 в зависимости от вида корпуса изображены на рисунке 3.

Аналогами tl431 отечественного производства являются микросхемы КР142ЕН19А и К1156ЕР5Т. К зарубежным аналогам можно отнести:

  • KA431AZ;
  • KIA431;
  • HA17431VP;
  • IR9431N;
  • AME431BxxxxBZ;
  • AS431A1D;
  • LM431BCM.

Графики электрических характеристик

Добрый день. Я не электронщик но то что мне было нужно я нашел. Большое спасибо. Понравились две первые схемки (переделал схем 20, но то греется, можно чай кипятить, то тока на выходе нет), но без индикатора заряда. Помогите пожалуйста в этом вопросе. Заранее благодарен. С уважением Александр.

Проще готовый блок купить за 100-150 руб.

Я тоже из Кирова, из Ганги.

Здравствуйте ,случилась поломка ASUS Maximus VI Extreme , нашел замкнутый F90 P02 CFD0423 вроде полевик данных не нашел , какой структуры и чем заменить не в курсе , помогите с информацией . Если что не так написал извините в первый раз советуюсь .

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения — следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

https://youtube.com/watch?v=tZXDvW2m5To

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

  • DA1 – TL431K — если нет в наличии этого элемента, то его можно заменить на tl4311, tl783ckc ;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом;
  • VT1, VT2 – BC857B;
  • VT3 – az431 или az339p ;
  • VT4 – BSS138.

Необходимо обратить особое внимание на транзистор az431. Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице

https://youtube.com/watch?v=cpKZHKTYsh0

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Схемы включения TL431

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.

Стабилизатор тока на TL431

Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

Светодиодная лампа на 220 вольт GL5.5 с импульсным драйвером на микросхеме BP3122

Сначала о драйвере. Микросхема BP3122 специально разработана для светодиодного освещения и является высокоэффективной микросхемой импульсного источника питания с встроенными полевыми транзисторами (650V), что сводит к минимуму количество внешних элементов, позволяет уменьшить размеры платы и, соответственно, стоимость драйвера.

Стабилизация тока через светодиоды реализована без оптопары, цепи обратной связи на TL431 и вспомогательной обмотки трансформатора. Вместе с тем минимизировано количество внешних компонентов. Пусковой ток составляет 60 мкА . Конденсатор в цепи питания VCC заряжается через
пусковой резистор при включении. Как только напряжение VCC достигнет пускового порога,
BP3122 начнет вырабатывать импульсы. Напряжение питания микросхемы стабилизирует внутренний стабилизатор на 15V. Сверхнизкий ток потребления микросхемы не требует наличия вспомогательной обмотки на трансформаторе для питания микросхемы.

Для стабилизации выходного тока через светодиоды к выводу SC подключается внешний резистор, через который протекает ток выходного полевого транзистора. Падение напряжения на резисторе сравнивается на компараторе с внутренним источником опорного напряжения 500 мВ

Таким образом изменяется скважность импульсов и поддерживается постоянный ток через светодиоды с точностью плюс/минус 5%

Рекомендуемая выходная мощность микросхемы не более 5 Вт, а стабилизация выходного тока поддерживается в диапазоне входных напряжений переменного тока от 85 до 265 вольт. Максимальная частота переключения при нормальной работе составляет 65 – 70 кГц. В микросхеме реализованы: защита от короткого замыкания, защита от перенапряжения, защита от перегрева (порог 150 ℃ с гистерезисом 25 ℃) и другие. Если неисправность устранена, система восстановится и начнет нормально работать.

Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным. Теперь, собственно, о лампе GL5.5 – E27

Срок службы, продекларированный производителем, 50 000 часов. Гарантию в магазине дали на пол года. А на традиционные энергосберегающие дают год

Теперь, собственно, о лампе GL5.5 – E27. Срок службы, продекларированный производителем, 50 000 часов. Гарантию в магазине дали на пол года. А на традиционные энергосберегающие дают год.

Китайские производители не оговаривают снижение яркости в процессе эксплуатации, а оно может достигать 50% и более в течение 1-2 лет и зависит от степени превышения номинальных режимов светодиодов. А цена у таких ламп пока-что, как у «вечных», хотя качественные диодные лампы стоят в разы дороже. Лампа будет светить, возможно, и 20 лет, но вы ее замените гораздо раньше, т.к. свет этот будет со временем все тусклее и тусклее. А причина простая, чтобы получить хорошую яркость дешевые светодиоды загоняют в жесткий режим. Нагрев таких светодиодов более 50 градусов даже на радиаторе, то есть они подвержены ускоренной деградации.

На выходе драйвера лампы GL5.5 установлены две параллельные цепочки из трех последовательно включенных светодиодов. Вместо предохранителя установлен резистор 2,2 Ом. При входном напряжении сети переменного тока 236 вольт напряжение на светодиодах составило 9,37 вольта постоянного тока. Ток через диоды – 250 мА. Получаем мощность около 2,5 Вт, до 50% которой уходит на нагрев светодиодов.

Все шесть светодиодов установлены на очень тонкой плате, приклеенной к алюминиевой пластине, которая крепится к алюминиевому радиатору с помощью двух винтов. В пластмассовой части лампы имеются вентиляционные отверстия.

Схема драйвера собрана на печатной плате с двухсторонним монтажом элементов. При включении лампы наблюдается задержка 0.5-1 сек до начала свечения. Стеклянный плафон рассеивает свет, а без плафона свет направленный и более яркий. Исходя из этого сравнение диодных ламп и ламп накаливания очень условно, но данную лампу можно приравнять к 40 ваттной лампе накаливания по силе света. Количество светодиодов и их размеры как в светильнике на 3 Вт, но они более мощные.

Напряжение на светодиоде
Схема
светодиодной лампы на 220в
Лампа ЭРА А65 13Вт
Как паять светодиодную ленту
Светодиодная лента на 220 в
Простое зарядное устройство
Разрядное устройство для автомобильного аккумулятора
Схема драйвера светодиодов на 220
Подсветка для кухни из ленты
Подсветка рабочей зоны кухни
LED лампа Selecta g9 220v 5w
Светодиодная лампа ASD LED-A60
Схема светодиодной ленты
Простой цифровой термометр своими руками с датчиком на LM35
Общедомовой учет тепла

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Советуем изучить Реактивное сопротивление

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Светодиодный драйвер

Светодиодный драйвер до 5А

Зарядное для аккумуляторов

Регулируемый двухполярный блок питания от 0 до 36В

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.

Нестандартные варианты и функциональные аналоги

Микрофотографии кристаллов TL431 трёх разных производителей в одном масштабе. Крупнейшая светлая область каждого кристалла — ёмкость частотной компенсации, крупная гребенчатая структура рядом с ней — выходной транзистор, группы «лишних» контактных площадок — технологические контакты для ступенчатой подстройки на заводе-изготовителе

Микросхемы различных производителей, выпускаемые под именем TL431 или под близкими к нему именами (KA431, TS431 и т. п.), могут существенно отличаться от оригинальной TL431 производства Texas Instruments. Иногда различия вскрываются лишь опытным путём, при испытаниях ИС в недокументированных режимах; иногда они явно декларируются в документации производителей. Так, TL431 производства Vishay отличается аномально высоким, порядка 75 дБ, коэффициентом усиления напряжения на низких частотах. Спад коэффициента усиления этой ИС начинается на отметке 100 Гц. В диапазоне частот свыше 10 кГц частотная характеристика TL431 Vishay приближается к стандарту; частота единичного усиления, около 1 МГц, совпадает со стандартной. Микросхема ШИМ-контроллера SG6105 содержит два независимых стабилизатора, заявленные как точные аналоги TL431, но их предельно допустимые IKA и UKA составляют лишь 16 В и 30 мА; точностные характеристики этих стабилизаторов заводом-изготовителем не тестируются.

Микросхема TL430 — исторический функциональный аналог TL431 с опорным напряжением 2,75 В и предельно допустимым током катода 150 мА, выпускавшийся Texas Instruments только в корпусе для монтажа в отверстия. Встроенный бандгап TL430, в отличие от одновременно выпущенной TL431, не был скомпенсирован по температуре и был менее точен; в выходном каскаде TL430 не было защитного диода. Выпускаемая в XXI веке микросхема TL432 представляет собой обычные кристаллы TL431, упакованные в корпуса для поверхностного монтажа с нестандартной цоколёвкой.

В 2015 году Texas Instruments анонсировала выпуск ATL431 — функционального аналога TL431, оптимизированного для работы в экономичных импульсных стабилизаторах. Рекомендованный минимальный ток катода ATL431 составляет всего 35 мкА против 1 мА у стандартной TL431 при тех же предельных значениях тока катода (100 мА) и напряжения анод-катод (36 В). Частота единичного усиления сдвинута вниз, до 250 кГц, чтобы подавить усиление высокочастотных помех. Совершенно иной вид имеют и графики граничных условий устойчивости: при малых токах и напряжении анод-катод 15 В схема абсолютно устойчива при любых значениях ёмкости нагрузки — при условии использования высококачественных малоиндуктивных конденсаторов. Минимальное рекомендованное сопротивление «антизвонного» резистора — 250 Ом против 1 Ом у стандартной TL431.

Помимо микросхем семейства TL431, по состоянию на 2015 год широко применялись всего лишь две интегральные схемы параллельных стабилизаторов, имеющие принципиально иную схемотехнику, опорные уровни и предельные эксплуатационные характеристики:

  • Биполярная ИС LMV431 производства Texas Instruments имеет опорное напряжение 1,24 В и способна стабилизировать напряжения до 30 В при токе катода от 80 мкА до 30 мА;
  • Низковольтная КМОП-микросхема NCP100 производства On Semiconductor имеет опорное напряжение 0,7 В и способна стабилизировать напряжения до 6 В при токе катода от 100 мкА до 20 мА.

Схемотехника устройств на LMV431 и NCP100 аналогична схемотехнике устройств на TL431.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется – 2%.
  • Буква А в маркировке свидетельствует о – 1% точности.
  • Буква В говорит о – 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Как проверить электрический стабилизатор

Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:

  • Две настольные лампы.
  • Стабилизатор.
  • Электрическую плитку.
  • Удлинитель питания с 3-мя гнездами.

Порядок проверки:

  1. Вставить вилку удлинителя в домашнюю розетку.
  2. Стабилизатор подключить к удлинителю.
  3. К стабилизатору подключить настольную лампу на 60 Вт.
  4. Подключить электрическую плитку к удлинителю.

Случается, и такая ситуация, когда люди не понимают работу стабилизатора, и сетуют на его плохую работу, хотя дело совершенно не в этом. Это получается так, что стабилизатор обесточивает нагрузку неожиданно, при стирке белья в машине автомате

. Но в этом нет никаких неисправностей.Стиральная машина-автомат является мощным потребителем электрической энергии, но ее мощность распределяется неравномерно .При нагревании воды мощность может достигать до 5 кВт, а при обычной стирке уменьшается до 2 кВт .Из уроков физики средней школы известно, что если на входе трансформатора уменьшить напряжение, а на выходе увеличить напряжение, то выходная мощность также значительно снизится . Смотрите статью про стабилизатор для стиральной машины.

Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.

Схемы включения TL431

Тл431, цоколевка которого начертана на схеме, может включаться в различных вариантах. Используя ИС, можно не только стабилизировать, но и контролировать напряжение и различные параметры в электросхемах. Кроме того, она входит в состав звуковых или световых сигнализирующих устройств.

Интересно. Если перевести показатель любой физической величины в напряжение, то допустимо собрать аппарат, контролирующий эту физическую величину.

Это значит, что, установив специальные датчики, возможно следить за такими параметрами, как:

  • влажность;
  • температура;
  • давление;
  • уровень жидкости;
  • значение освещённости.

Перечень можно продолжать, но суть одна – электронный стабилитрон допустимо использовать не только в БП и преобразователях.

Стабилизатор тока на TL431

Стабилитрон tl431 в подобном подключении стабилизирует величину тока. Включенный между эмиттером и корпусом схемы (минусом) R2 используется как шунт. Напряжение на нём составляет 2,5 В. Выходной ток (Iвых) соответствует соотношению 2,5/R2.

Устройство и принцип действия

По внешнему виду устройство напоминает обыкновенный транзистор. Однако, несмотря на три вывода, в состав интегральной схемы (ИС) tl431a входят:

  • операционный усилитель (ОУ);
  • источник опорного (эталонного) напряжения UREF;
  • транзистор, включенный на выходе.

ИС тл431 выполняет контроль такого параметра, как напряжение, и носит название управляемого стабилитрона.

Внимание! Эталонное (опорное) напряжение (UREF) необходимо не для питания цепей микросхемы, а для того чтобы, опираясь на значение этого напряжения, производить стабилизацию на выходе ИС. Если провести аналогию с транзистором, то выполненный с применением биполярных триодов параллельный стабилизатор напряжения (СН) так же обладает тремя выводами:

Если провести аналогию с транзистором, то выполненный с применением биполярных триодов параллельный стабилизатор напряжения (СН) так же обладает тремя выводами:

  • «база» – управляющий вход (R0);
  • «коллектор» – катод (C);
  • «эмиттер» – анод (А).

При работе СН к управляющему входу (R0) и аноду (А) прикладывается положительный потенциал. Ток IКА, протекающий по цепи «катод – анод», представляется стабилизированным выходным сигналом.

Важно! ОУ в составе ИС сравнивает значение UREF с U входящим и на основании этого выполняет стабилизацию. В этой ИМС UREF равно 2,5 В и вырабатывается встроенным источником

Иными словами, транзистор, установленный на выходе ОУ, откроется тогда, когда подаваемое на вход напряжение будет равно или чуть превысит UREF.

Как следует из схемы, на электроде R расположен делитель напряжения из резистивных элементов. Используя внешние делители, реально организовать стабилизацию в интервале Uвх = 2…36 В. При этом максимальный ток может достигать 100 мА.

Интересно. Если накоротко замкнуть выводы первый и третий и не использовать делитель, то напряжение стабилизации такого управляемого стабилизатора будет равно 2,5 В.

Схема включения

Разберёмся, как работает TL431, для чего посмотрим на структурную схему включения. Если действующее напряжение на входе не превышает опорное (Vref), на выходе ОУ также небольшое напряжение, поэтому транзистор закрыт. Величина тока протекающего через него невелика, не больше 1 мА. Когда напряжение действующее на входе нарастает и превышает Vref, открывается ОУ. Таким образом через транзистор начинает течь ток.

Параметрический стабилизатор

Чтобы задать напряжение, в выходной цепи стабилизатора должен находиться делитель напряжения, состоящий из двух резисторов R1 и R2. Разность потенциалов на выходе устройства при этом равна:

Uвых=Vref(R1/R2+1),

где Vref – опорное напряжение, для рассматриваемой микросхемы TL431 равно 2,5 В.

При увеличении соотношения между резисторами R1/R2 растет выходное напряжение. Зная величину напряжения действующего на выходе и задавшись значением R2, можно определить сопротивление R1:

R1=R2(Uвых/Vref–1)

Величина сопротивления R3 подбирается также, как и для устройств с стабилитроном. Устанавливать конденсатор на выходе схемы не рекомендуется, чтобы предотвратить паразитную генерацию.

Компенсационный стабилизатор

Компенсационный стабилизатор работает же, как и при использовании стабилитрона. В них для уравновешивания разницы напряжений действующих на входе и выходе используется мощный транзистор. Однако точность стабилизации в устройствах с TL431 будет выше. Здесь величина сопротивления R1 рассчитывается на наименьший ток 5 мА. R2 и R3 рассчитываются так же, как и для параметрического стабилизатора.

Рассмотренный выше стабилизатор не может работать с выходными токами равными единицам или даже десяткам ампер. Чтобы построить мощный блок питания нужно использовать усилительный каскад с двумя транзисторами, включёнными как в схеме эмиттерного повторителя.

Ниже представлена схема работы стабилизатора напряжения TL431. Здесь R2 ограничивает ток, текущий через базу VT1. Резистор R3 нужен для компенсации обратного коллекторного тока VT2. Конденсатор С1 используется для увеличения стабильности работы на больших частотах.

Стабилизатор тока

Приведём схему  стабилизатора тока на TL431. Здесь на сопротивлении R2, при помощи обратной связи, установлено напряжение 2,5 В. Тогда ток на нагрузке будет равен Iн=2,5/R2 (током базы пренебрегаем). При подстановке в данную формулу величины сопротивления в омах получим ток в амперах, а если в килоомах, ток будет в миллиамперах.

Что из себя представляет микросхема TL431

Эту микросхему, разработанную в 70-х годах ХХ века, часто называют «регулируемым стабилитроном», и на схеме обозначают, как стабилитрон с двумя классическими выводами – анодом и катодом. Также имеется третий вывод, о назначении которого позже. На вид микросборка стабилитрон совсем не напоминает. Выпускается, как обычная микросхема, в нескольких вариантах корпуса. Изначально изготавливались варианты только под плату с отверстиями (true hole), с развитием SMD-технологий TL431 стали «упаковывать» и в корпуса для поверхностного монтажа, включая популярные SOT с различным количеством выводов. Минимально необходимое для работы количество ног – 3. Некоторые корпуса содержат большее количество выводов. Излишние ножки либо никуда не подключены, либо задублированы.

https://youtube.com/watch?v=gRb8NdCV5XM

https://youtube.com/watch?v=KZZdFc8XwqU

Графики электрических характеристик

Добрый день. Я не электронщик но то что мне было нужно я нашел. Большое спасибо. Понравились две первые схемки (переделал схем 20, но то греется, можно чай кипятить, то тока на выходе нет), но без индикатора заряда. Помогите пожалуйста в этом вопросе. Заранее благодарен. С уважением Александр.

Проще готовый блок купить за 100-150 руб.

Я тоже из Кирова, из Ганги.

Здравствуйте ,случилась поломка ASUS Maximus VI Extreme , нашел замкнутый F90 P02 CFD0423 вроде полевик данных не нашел , какой структуры и чем заменить не в курсе , помогите с информацией . Если что не так написал извините в первый раз советуюсь .

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор. TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники. Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

Читать также: Как заряжать необслуживаемый аккумулятор автомобиля видео

Схемы включения TL431

Параметрический стабилизатор напряжения

Тл431, цоколевка которого начертана на схеме, может включаться в различных вариантах. Используя ИС, можно не только стабилизировать, но и контролировать напряжение и различные параметры в электросхемах. Кроме того, она входит в состав звуковых или световых сигнализирующих устройств.

Интересно. Если перевести показатель любой физической величины в напряжение, то допустимо собрать аппарат, контролирующий эту физическую величину.

Это значит, что, установив специальные датчики, возможно следить за такими параметрами, как:

  • влажность;
  • температура;
  • давление;
  • уровень жидкости;
  • значение освещённости.

Перечень можно продолжать, но суть одна – электронный стабилитрон допустимо использовать не только в БП и преобразователях.

Корпус и цоколёвка ИС

Стабилизатор тока на TL431

Стабилитрон tl431 в подобном подключении стабилизирует величину тока. Включенный между эмиттером и корпусом схемы (минусом) R2 используется как шунт. Напряжение на нём составляет 2,5 В. Выходной ток (Iвых) соответствует соотношению 2,5/R2.

Токовая стабилизация на TL431

Индикатор повышения напряжения

Мониторить уровни U позволяет стабилизатор tl431 схема включения которого выполнена так, что стабилитрон не откроется при поступлении на вход R (управляющий) U < 2,5 В.

Внимание! Сквозь запертый TL431 ток течёт всё равно. Хоть он мал – до 0,4 мА, но заставляет индикатор гореть

Приходится параллельно led-диоду включать R = 2-3 кОм.

Схема индикатора

При поступлении на R U > 2,5 В ИС откроется. Индикатор зажжётся. Чтобы согласовать стабилитрон и led-диод по величине текущего через них тока, в ветвь для токоограничения (индикатора) включают R3.

Формула для расчёта R3 имеет вид:

R3 = (Uпит – Uh1 – Uda)/Ih1,

где:

  • Uh1 – напряжение на led-диоде, В;
  • Uda – значение потенциала на открытом стабилитроне, В;
  • Ih1 – номинальный ток светодиода.

При расчётах следует ориентироваться на то, что для TL431 Umax = 36 В, допустимые токи для led-диодов – 5…15 мА. Делитель напряжения на входе управляет величиной напряжения срабатывания Uзажиг. данного сигнализатора. Рассчитывают R2, применяя формулу:

R2 = 2,5*R1/(Uзажиг. – 2,5).

Кстати. На практике R2 подбирается при помощи подключения подстроечного сопротивления. С его помощью выставляется нужный предел включения, после чего замеряется тестером его сопротивление, и впаивается уже резистор с постоянным значением.

Проверка исправности TL431

Возникает вопрос: tl431 как проверить мультиметром? Никак! Это микросхема, вмещающая в своём составе множество элементов. Только одних транзисторов десять штук. Поэтому либо совсем заменяется управляемый стабилитрон, либо собирается тестовая схема (типа индикатора напряжения), и проверяется то, как она будет работать.

Индикатор низкого напряжения

В данном случае применяют инверсное подключение, светодиод излучает при запертом стабилитроне. Элемент индикации подключен параллельно ИС и при открытом стабилитроне 2-х вольт мало для излучения света. Когда микросхема закроется, ток уменьшится, напряжение на нём увеличится, и индикатор засветится.

Схема индикации низкого напряжения

Индикатор изменения напряжения

В устройствах, применяемых для контроля над изменением напряжения, используют управляемый стабилитрон. В качестве индикатора берётся светодиод с двумя цветами свечения, например, красно-зелёный. Красный свет сигнализирует о превышении, зелёный – о низком значении U.

Схема устройства контроля над изменением напряжения

Работа TL431 совместно с датчиками

Для работы с датчиками ИС tl431a схема включения изменяется так, что на смену R2 в плечо подключают нужный датчик.

Внимание! На нижеприведённой схеме для примера обозначены разные датчики, которые присоединяют на место R2. Датчики вместо резистора

Датчики вместо резистора

TL431 в схеме со звуковой индикацией (ЗИ)

Применение ИС в схемах с ЗИ возможно для мониторинга процессов наполнения и поддержания границ воды в водонапорных башнях. В ёмкости крепится пара металлических полосок на верхнем уровне водяного столба. Вода, заполнив ёмкость, замкнёт электроды, размещённые друг относительно друга через 2,5-3,5 мм. Схема сработает и выдаст акустическое оповещение.

Индикатор уровня воды